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ABSTRACT 

The instantaneous frequency law (IFL) is a very 
important item when the physical parameters of the 
corresponding signal have to be evaluated.  Radar, sonar, 
mechanical diagnostic are just three domains where the 
signal’s non-stationarity imposes the IFL estimation.  

There are several cases where the IFL is composed by 
fast variations. Digital phase modulations or signals emitted 
by electrical switches are typical examples of  IFLs having 
fast transient parts. 

To deal with such kind of signals, we propose a new 
method based on the chirping of the phase transitions. 
Namely, the Phase Chirping Operator (PCO) transforms a 
fast IFL variation in a chirp component. This chirp contains 
all the parameters about the initial variation : time, duration, 
covered bandwidth, etc. Results for some physical data will 
highlight the benefits of the PCO compared with wavelet 
transform and Wigner-Ville distribution.    

1. INTRODUCTION 

Analysis of the signals characterized by a complex time-
frequency behaviour is a challenging topic, due to the 
richness of the information carried by the IFL. In a large 
number of applications the analysis of the time-frequency 
(T-F) content provides an efficient solution to the problems 
arising in these fields [1]. The signals associated to real 
applications are generally characterized by many time-
frequency structures usually considered as short-time 
stationary structures. The connections between these 
stationary parts are often subject of fast transitions whose 
estimation can be of great value (estimation of digital 
modulations in a COMmunication INTelligence – COMINT 
context [2], for example). On the other hand, time-frequency 
transitory parts are usually “talking” about the events 
happened during the analysed process (mechanical faults 
[3]).  

The estimation of the transient parts is frequently done 
with help of either linear (Gabor transform, wavelet-based 
techniques, etc) or bi-linear time-frequency transforms 
(Cohen’s class methods) [2,3]. One aspects of common 

problems when dealing with complex signals are related to 
the resolution trade off and, respectively, to the cross terms. 
For this reason, the analysis of phase singularities is 
complex and very often limited to simple configuration.  

In this paper we propose a method which is aimed at 
transforming a phase singularity in a chirp component. In 
this way, we can easily use the conventional time-frequency 
representation (TFRs) for displaying or monitoring the 
phase parameters. This concept can be applied everywhere 
the phase singularities occur.  

This paper is organized as follows. In the section 2 a 
short mathematical description of signal characterized by 
phase discontinuities is presented. This establishes the 
framework for the PCO concept, introduced in section 3. 
Some results, provided for few physical signals, are 
depicted in section 4. We will close with “Conclusion”. 

2. MODELING SIGNAL PHASE SINGULARITIES 

 Let consider a non-stationary signal expressed as 

( ) ( )exps t A j tφ= ⎡ ⎤⎣ ⎦                (1) 

where A is the amplitude and φ  is its instantaneous phase 
(IP). The derivative of the IP relates to the instantaneous 
frequency law (IFL)  

( ) ( )1

2

d
IFL t t

dt
φ

π
=   (2) 

 From the signal issued from modulation processes, the 
IP is expressed as  

( ) ( )02t f t m tφ π= +   (3) 

where f0 stands for the carrier frequency and m(t) is the 
modulation function. For simplicity reason we consider f0=0
(which corresponds to the base-band signal). 
 In the case of smoothed modulations laws (micro-
Doppler effect, sinusoidal frequency modulation, etc), the 
polynomial phase modeling provides a satisfactory model of 
the instantaneous phase [4]. In this paper, we will focus on 
the signal whose instantaneous phase is characterized by 
many abrupt transitions (also called phase singularities). 
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This model is appropriate for digital phase modulations 
(Phase Shift Keying-PSK), for speech attacks [5] or a signal 
issued from rotating machinery when some faults occur. 
Generally, for a such signal, the IP can be expressed as  

( ) ( )
kk D k

k

t a h tφ τ= −∑                 (4) 

where ak is the amplitude of kth phase transition and h is the 
rectangular window of length Dk and center τk. Figure 1.a. 
shows an example of a phase function corresponding to a 
PSK modulation.  

Fig. 1. Phase modulation and its IFL 

 The derivative of this function provides the IFL which is 
composed by a sum of weighted Dirac functions (we ignore 
the 1/2π term) :  

( ) ( ) ( ) ( )[ ]∑ −−−−==
k

kkkk Dttat
dt

d
tIFL τδτδφ  (5) 

 As illustrated in the next figure, the analysis of such 
IFLs via classical TFRs is not obvious. We considered the 
representation of the BPSK previously presented by the 
Wigner-Ville Distribution (WVD) and Wavelet Transform 
with a complex Morlet analyzing wavelet.   

Fig. 2. Analysis of a BPSK modulation by WVD and WT

 Clearly, due to the incapacity of the WVD to deal with 
this type of signals, the TFR provided by the WVD is 
completely useless when we try to identify the modulation 
parameters. In the case of the WT, since this technique is 
appropriate to detect the signal singularities, it is possible to 
distinguish the time locations of the phase transitions. 
Nevertheless, an accurate estimation and the retrieval of  
transition amplitudes require a more complex procedure 
which is not always easy to design. Moreover, the problem 
becomes more complicated for the signal corrupted by noise 
(figure 2, right side).   
 In the following example we consider the signal 
recorded from a rotating machinery which changes its 
angular velocity in three steps (figure 3.a). The wavelet 
transform of this signal is illustrated in figure 3.b. We can 
clearly distinguish the three frequency steps. Furthermore, 

two belt faults during the stationary phases have been 
introduced (at 1 and 5 seconds). These faults can be 
modeled as fast phase transitions [3]. 

Fig. 3. Phase singularities from a faulty rotating machinery  

 The figure 3.c. displays the WVD of the signal 
corresponding to the faulty regime. The inherent cross-terms 
hide the phase singularities associated to the faults. In the 
case of the WT, the phase transitions correspond to some 
wavelet coefficients located in the proximity of the phase 
transitions (figure 3.d.; the transitions are marked by 
arrows). Nevertheless, these coefficients are less energetic 
(visible only in a logarithmic scale representation) than the 
ones corresponding to the stationary or transitory parts. 
Moreover, their spreading poses serious problems when we 
are interested to localize the faults.      
 These two examples illustrate the limitations of well- 
known TFRs when the IP is composed by fast transitions.  

3. CONCEPT OF PHASE CHIRP OPERATOR 

 Let us consider a signal whose instantaneous phase is a 
rectangular window of amplitude A, length D and located at 
t0 (figure 4). The phase derivation, which can be done by 
using the second order instantaneous moment operator [4] 

( ) ( ) ( )ttststs ∆−⋅= *~                                (6) 

(* stands for the conjugate operator and ∆t is the lag), leads 
to the following expression of the phase  

( ) ( ) ( )[ ]DttttAt −−−−= 00

~ δδφ                     (7) 

 Let consider a linear function of length L expressed as

( ) [ ]2/,2; LLtttg −∈=                       (8) 

An example of such a function is illustrated in figure 4.  
The convolution of this function with (7) transforms the 

two Dirac functions in two linear functions (figure 4) : 

( ) ( ) ( ) =−=∗= ∫ ττφτφϕ dtgtgt
~

))(
~

(

( ) ( ) ( ) ( )DtthDttAtthttA LL −−−−−−−= 0000
            (9) 
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Fig. 4. Time-broadening of Dirac functions 

 Furthermore, the estimation of this linear functions leads 
to the parameters of the initial phase :  

( )
α̂tanˆ

2/ˆˆˆ;ˆˆˆ
21012

LA

tttttD

=

+=−=     (10) 

where ^ stands for estimated, t1,2 are the time centers of both 
functions and α  is the function slope.   
 The time-broadening procedure illustrated in the figure 4 
performs only if we have control of the phase law samples 
which compose the function (7). In signal processing 
applications, this situation is hypothetical since we have 
access only to the signal samples. Fortunately, it is possible 
to adapt this time-broadening procedure to deal with the 
signal samples. For this purpose, we propose the Phase 
Chirping Operator (PCO), defined as : 

[ ] [ ]{ } [ ]∏ −=
k

kg
x knxnPCO          (11) 

where L is the length of g. For a signal ( ) ( )( )tjtx φexp=  the 

effect of this operator is  

   [ ] [ ] [ ]
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
−= ∑

k

x knkgjn φexpPCO       (12) 

which is equivalent to the phase convolution with the 
function g. Considering a phase function issued by the 
derivation of (4) (using operator 6), expressed as 

[ ] [ ] [ ]{ }∑ −−−−=
k

kkkk Dnnan τδτδφ~  (13) 

the effect of the PCO can be analytically described as : 

[ ] [ ] [ ]
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 The equation (14) shows that using the PCO we can 
transform the sum of Dirac in a sum of functions g which 
conserves the amplitude and the time parameters of the 
original phase law. Choosing a quadratic form for the 
function g, i.e. [ ] [ ]2/,2;2 LLnnng −∈= , the PCO provides 

the chirping of the phase transitions :  
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where h is the rectangular function defined as  

[ ] [ ]
⎩
⎨
⎧ +−∈

=−
otherwise

LnLnn
nnLh

,0

2/0,2/0,1
0

 (16) 

 The IFL of the signal issued by the PCO-based 
transforming is composed by a sum of delayed chirps whose 
parameters lead to the original phase. We can also notice 
that the chirps have an alternating sign rate. Actually, 
estimating the chirp parameters : 

k

kn

kn

k

ck

ck

indexofratechirp

indexofchirpratenegative theofcenter time the

indexofchirpratepositive theofcenter time the

−
−

−
−

+

α
allows for evaluating the phase law parameters according to 
:

( )
kk

ckckkckckk

La

nnnnD

α
τ

ˆtanˆ

2/ˆ;ˆ

=
+=−= −++−

          (17) 

 Therefore, by using the PCO concept, it is possible to 
estimate the parameters of a phase law of type (4) (or 
alternatively, an IFL given by 5) by estimating the chirps 
associated to each phase transition. For the purpose of chirp 
estimation, we have used the method proposed in [6] which 
adaptively estimates the best chirplets. 

Noise robustness. The PCO definition (11) indicates that, in 
the presence of the additive noise, the corrupting samples 
will be taken into account during the multiplications implied 
by the operator. To reduce the noise effect, we apply a 
sliding window whose parameters are adaptively modified 
according to the robust representation concept [7]. More 
precisely, the window is modified in order to minimize the 
error function e which expresses the similarity between the 
signal and a set of harmonics whose frequencies are close to 
the signal’s IFL.  
 Using this concept, the definition of the robust PCO is  

[ ] [ ] [ ]{ } [ ]

[ ] [ ]
[ ]

[ ]
[ ]
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2/

−

−=
⎟⎟
⎠

⎞
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k
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x

ne
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ne

nw
n

knxknn

γ

γPCO         (18)

where wh is a Hamming window of length P.
 Illustrative results are presented in the next section for 
synthetic and physical data.  

4. RESULTS 

First, let us consider a synthetic signal whose analytical 
form is  
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Appling the PCO on the signal derived according to(6) 
we obtain a complete characterization of the phase 
transitions as indicated in figure 5. In this figure we remark 
that the signal issued from PCO application contains four 
chirps associated to the four phase transitions. The Pseudo 
WVD displays clearly these chirps. At the same time, the 
wavelet transform shows its limitations in accurately 
analyzing this type of signal.  

Fig. 5. PCO-based instantaneous phase estimation 

By applying the “Chirping Hunting” method [6] we 
obtain an evaluation of chirp parameters. Furthermore, 
exploiting these parameters via (16) we obtain the 
parameters of the phase transitions, depicted in the figure 5. 
We remark that the estimated values are very closed to the 
theoretical ones, the small differences being due to the 
limited numerical precision. 

In the next examples we analyze, using PCO, the signals 
considered in the section 2 : the PSK and the recorded 
signal from a faulty machinery. These signals were 
corrupted by a additive noise and the SNR was about 12 dB. 
The PWVDs of the phase chirped signals are illustrated in 
the figure 6. In the case of the PSK we display the estimated 
phase law (figure 6.a). Comparing with the figure 1, we 
remark that the parameters of the PSK are well estimated. 
We obtain the same symbol duration and the same 
differences between phase levels. This is justified in figure 
6.a. : the chirp rates corresponding to the transitions 1 to –1 
are twice than the chirp rates associated to the transitions 0 
to 1. 
 For the signal issued from a faulty rotating machinery 
we remark that the phase transitions caused by the faults are 
well detected in time at 1 and 5 seconds, respectively. 
Moreover, since the second fault has been provoked by a 
longer event than the first one, the result shows that the 
PCO-based analysis is able to inform about the time 
duration of the phenomenon which generated the phase 
transitions.  

Fig. 6. PCO-based IP estimation for two physical signals

5. CONCLUSION 

While the already existing TFRs are aimed to estimate 
the IFLs, the analysis of the phase singularities is generally 
not efficiently done. In this paper we proposed a method for 
the analysis of the phase singularities. This method is based 
on the chirping of the phase singularities which enables 
their estimation using the existing methods for chirp 
analysis. The results proved the efficiency of the method to 
provide a complete analysis of the phase singularities in a 
realistic context (presence of noise and signal issued form 
real applications).  

In the future, our work will be focused on extending this 
method to the multi-component signals. On the other hand, 
the noise robustness of the PCO will be also subject of 
further works.  
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