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ABSTRACT

An estimator for the phase parameters of mono- and mul-
ticomponent FM signals, with both good numerical prop-
erties and statistical performance is proposed. The pro-
posed approach is based on the Hough transform of the
pseudo Wigner-Ville time-frequency distribution (PWVD).
It is shown that the numerical properties of the estimator
may be improved by varying the PWVD window length.
The effect of the window time extent on the statistical per-
formance of the estimator is delineated. Experimental data
is used for validation of statistical properties.

1. INTRODUCTION

The problem is to estimate the phase parameters of mono- or
multicomponent FM signals from noisy observations. The
multicomponent signal model is s(t) =

∑K
k=1 Akejϕ(t;θk)

where K is the number of components, {Ak} are complex-
valued arguments and {ϕ(t;θk)} are the phase functions
parameterised by {θk} and containing no constant term with
respect to time. The instantaneous frequency (IF) of com-
ponent k is defined as ω(t;θk) = dϕ(t;θk)/dt. Given N
noisy samples of s(t), the problem is to estimate {θk}.

In this paper, we consider the time-frequency Hough
transform (TFHT) approach proposed in [1]. This method is
applicable to general nonlinear FM models and multicom-
ponent signals. However, the implementation can be com-
putationally intensive, since many possible signal trajecto-
ries must be evaluated. It was suggested in [2] that this prob-
lem may be approached by first decimating and lowpass fil-
tering the TFD, before applying the Hough transform, in
order to broaden the peak centered about the true parameter
values. While this may reduce the number of trajectories
needed to find the global maximum, each trajectory implies
a computational cost higher than that of the unfiltered TFD,
which is already of order N2.
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In this work, we propose a numerically efficient and at-
tractive implementation of the TFHT based on the Hough
transform of the pseudo Wigner-Ville distribution (PWVD),
which is computed by windowing the local auto-correlation
function in the lag domain. By virtue of the windowing, this
distribution is relatively computationally efficient, even for
long data lengths, and is applicable to nonlinear FM signals,
specifically to those generated by simple harmonic motions
of rotating or vibrating targets. Using a smaller window
also serves to broaden the peaks of interest in the Hough
transform. This property is exploited to improve numerical
efficiency, in the proposed estimation algorithm. We also
generalise the statistical analysis of the WHT given in [2]
(for linear FM), to include arbitrary FM models with the
PWVD.

2. THE PSEUDO WIGNER-HOUGH TRANSFORM

The pseudo Wigner-Hough transform (PWHT) of a signal
s(t) is defined as the line integral through the PWVD of
s(t), along the IF model; ω(t;θ). The PWHT is therefore a
mapping from the time domain to the parameter domain of
θ. In the discrete-time case the PWHT is calculated from N
samples {s(n)}N

n=0 of s(t) by

Ps(θ) =

(N−M−1)∑
n=M

M∑
l=−M

s(n + l)s∗(n − l)ej2ω(n;θ)l (1)

where M is a parameter defining the odd PWVD window
length; L = 2M + 1. We have defined the PWHT as the
summation over the N − L + 1 points in the center of the
PWVD, leaving out the rising and falling edges of the dis-
tribution, assuming that L << N . The inner sum implies
using constant number of data bilinear products, for each
lag, l. Defining Rs(n, l) = s(n + l)s∗(n − l) as the local
auto-correlation function, we see that the PWHT is a sum
over the center rectangle of the support of Rs(n, l), whereas
the WHT sums over the full diamond-shaped support. Com-
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pared with the WHT, the computational order is reduced by
a factor of approximately 2L/N for L << N .

Apart from reducing the computational complexity, the
PWHT has another important advantage over the WHT. In
Figure 1, we plot the PWHT and WHT functions for a lin-
ear FM signal observed in additive white Gaussian noise
(AWGN) at an SNR of 0dB, with N = 128 and M = 5.
Clearly the peak width in the parameter space is much larger
for the PWHT than for the WHT. This implies improved nu-
merical properties with respect to the WHT, when perform-
ing optimization. Subsequently, the required accuracy for
initializing an efficient gradient based search is reduced. Of
course, there is also a disadvantage in that a smaller win-
dow length implies reduced statistical accuracy. We there-
fore propose a grid search of Equation (1) using an ini-
tially small value of M , to reduce the number of trajectories
needed. We then use this estimate to initialize optimization
of Equation (1) for successively larger values of M in order
to improve statistical accuracy. The proposed algorithm is
summarised in Table 1.

1. Define M1 < M2 < · · · < Mp.

2. Perform grid search of Px(θ), using M = M1,
and define θ̂0 to be the location of the maximum
value. Set i ← 1.

3. Obtain θ̂i, via gradient-based optimization of (1)
using M = Mi, with initial location θ̂i−1.

4. Set i ← i + 1. While i ≤ p repeat from 3.

5. Take the final estimate: θ̂ = θ̂p.

Table 1. Estimation algorithm based on the PWHT.

The appropriate choice of M1, . . . ,Mp will depend on
the particular IF model used. Based on the general result
given in the following section, it is possible to find the value
of M which minimizes the estimator variance. This value
can be chosen for M = Mp. The initial value of M =
M1 should be chosen as low as possible for the given SNR.
We have found that the SNR performance threshold for the
PWHT is approximately O(1/L), which means that when
the SNR is above 0 dB, one may use M1 ≥ 1 and expect the
global maximum of the PWHT to correspond to the location
of the signal peak. For lower SNR, one may have to increase
the value of M1 such that the signal peak is above the noise
floor.

In the case of multicomponent signals, there will be a
number of peaks within the parameter space of the PWHT,
as illustrated in Figure 1. In this case, we propose sequential
estimation of each component. One estimates the ‘strongest’
component from the largest peak of the PWHT, using the
method outlined in Table 1. The complex amplitude is then

estimated, for example using a simple least-squares app-
roach, and the reconstructed component is then subtracted
from the observations. This is repeated until all compo-
nents have been estimated. This approach does not require
the components to have different amplitudes, as necessary
in sequential phase based methods [3]. If the number of
components is unknown, one may construct a test to deter-
mine when the residual term contains no more signal com-
ponents, though this is not elaborated upon here.

3. STATISTICAL ACCURACY

For the case of additive noise, the observations may be mod-
elled as x(n) = s(n)+v(n), n = 0, . . . , N −1, where s(n)
is the signal of interest and v(n) is a complex random pro-
cess. In the following we perform statistical analysis of the
PWHT estimator, based on the assumption that the signal IF
is approximately linear within all time intervals of length L,
over the entire observation period. We also assume that the
noise is a complex white Gaussian process of variance σ2

v .
The mean and variance of the PWHT estimator were de-

rived via a generalisation of the perturbation approach taken
in [2], for analysis of the WHT. Under the additive noise
model, we may express the PWHT of the observations as
the sum of Ps(θ), being the PWHT of the noise-free signal,
and a perturbation δP (θ), composed of cross signal-noise
and noise only terms. Given the piece-wise linearity as-
sumption, the maximum of Ps(θ) occurs at θ0, but in the
presence of noise the maximum shifts to a location θ0 + δθ
due to the influence of δP (θ). The bias and variance of the
estimator are therefore determined by the mean vector and
covariance matrix of δθ. As a first order approximation,
one can show1 that the bias E [δθ] = 0 and the covariance
matrix Γδθ = E

[
δθδθT

]
= C

−1
BC

−T , where

C = |A|2
N−M−1∑

n=M

M∑
l=−M

[
−j2l

∂2ω(n;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

+4l2
[
∂ω(n;θ)

∂θ

∂ω(n;θ)

∂θT

]∣∣∣∣
θ=θ0

]
, (2)

B = 8|A|2σ2
v

M∑
l=−M

M∑
k=−M

l k
N−M−1∑

n=M

N−M−1∑
m=M[

∂ω(n;θ)

∂θ

∂ω(m;θ)

∂θT

]∣∣∣∣
θ=θ0

δ(n − m + l − k)

+
4

3
σ4

vM(M + 1)(2M + 1)

×
N−M−1∑

n=M

[
∂ω(n;θ)

∂θ

∂ω(n;θ)

∂θT

]∣∣∣∣
θ=θ0

. (3)

1The full derivation of (2) and (3) is omitted here due to space limita-
tions.
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Defining the input SNR as SNRin = |A|2/σ2
v , one can eas-

ily show from (2) and (3) that Γδθ = 1
SNRin

D + 1
SNR2

in

E,
where the matrices D and E depend on M , N and the first
and second order derivatives of the IF model at θ0. The ex-
pression for Γδθ therefore has the same form as the variance
of the WHT estimator given in [2], for linear FM signals.
Further, for particular IF models such as PPS, one may find
from (2) and (3) that the variance is independent of the true
signal parameter value θ0.

4. RESULTS

4.1. Simulation

In the first example, the linear FM signal has a mean fre-
quency a0 = 0.12/Ts and chirp rate b0 = 0.23/(NTs),
where Ts denotes the sample period. The root mean square
error (RMSE) of the estimators for a and b is simulated and
compared with the theoretical variance expressions and the
CRB, as shown in Figure 2, with N = 128. The algorithm
of Table 1 is applied, with the window parameter M var-
ied from 3 to 13 in steps of 2. The initial estimate is com-
puted by a grid search of the PWHT with M = 3. We pre-
calculate a total of 50 trajectories within the non-aliased pa-
rameter range. In optimization of the PWHT, we have used
an efficient gradient based technique proposed by Fletcher
and Powell (FP) [4] for an SNR of 0 dB and above. It was
found that for an SNR below 0 dB, the FP algorithm did
not always converge. In these cases, we have used a more
robust, albeit more complex, algorithm proposed by Nelder
and Mead (NM) [5], which was found to produce good re-
sults down to about -5 dB SNR. The simulation results have
been obtained by averaging 500 Monte Carlo runs.

We note that the simulated accuracy shown in Figure 2
is consistent with the theoretical analysis, down to about
-5 dB SNR. The discrepancy at extremely low SNR is ex-
pected as assumptions inherent in the perturbation analysis
are no longer valid. While the estimation is clearly not effi-
cient, the performance is still very close to the CRB and the
computation time has been greatly reduced when compared
to the WHT based estimator. In this case, the need to use
the WHT becomes questionable, since the large increase in
computational burden provides only a minor improvement
in estimation accuracy. However, statistical efficiency is
easily achieved, if desired, by optimizing the WHT using
the PWHT estimate for initializing the search. The over-
all approach is still far more computationally efficient than
trying to directly optimize the WHT function.

4.2. Experimental

We have also applied the PWHT to experimental data, which
has been collected from a 24 GHz radar system, observing
a rotating fan. The rotational movement of the scatterer in
this experiment results in a sinusoidal Doppler shift with

respect to time, termed a micro-Doppler signature. To illus-
trate the estimation of multi-component signatures, we ap-
ply the PWHT estimator to the data collected only from the
in-phase baseband channel of the radar system. This effec-
tively produces two “signatures” each π radians out of phase
with the other. The baseband signal was sampled at 1000
Hz and we have used an observation interval of 402 sam-
ples (∼0.4 seconds) to estimate the micro-Doppler signa-
tures. The initial grid search is performed for B ∈ [0, 250]
Hz, φ ∈ [0, 2π) rad and ω0 ∈ [1, 10] Hz, with 12, 10 and
6 samples along each parameter range respectively (720 to-
tal trajectories). In the initial search, M = 15 was used
to calculate the PWHT, and in the final optimization step,
M = 35.

In Figure 3, we show the PWHT of the experimental
data for B = 16 Hz. The figure shows both cases of M =
15 and M = 35, which clearly illustrates the advantage of
widening the main peak, achieved with the smaller window
length. In Figure 4 we show the estimated micro-Doppler
signatures overlaid on the PWVD of the data (for M = 35).
In this figure we see both the initial grid search estimates
and the final estimated signatures. It is observed that both
the final estimated signatures overlap the TF signatures as
expected, although the initial grid search yielded somewhat
inaccurate results.

5. SUMMARY

We have proposed a numerically efficient approach for esti-
mation of the multicomponent nonlinear FM signals, based
on the Hough transform of the PWVD. The approach was
greatly reduced the number of FM trajectories to be com-
puted, while still achieving good statistical performance. In
the case of linear FM signals, performance close to optimal
was demonstrated. An expression for the estimator variance
valid for general FM models was also given. The proposed
approach was verified for nonlinear FM signals in the ap-
plication to experimental radar data, where multicomponent
micro-Doppler signatures, modelled as sinusoidal FM, were
successfully estimated.

6. REFERENCES

[1] S. Barbarossa and O. Lemoine, “Analysis of nonlinear FM
signals by pattern recognition of their time-frequency repre-
sentation,” IEEE Signal Processing Lett., vol. 3, 1996.

[2] S. Barbarossa, “Analysis of multicomponent LFM signals by
a combined Wigner-Hough transform,” IEEE Trans. Signal
Processing, vol. 43, 1995.

[3] P. Oliveria and V. Barroso, “Sequential extraction of com-
ponents of multicomponent PPS signals,” in Proc. ICASSP,
Phoenix, USA, Mar 1999.

[4] R. Fletcher and M. Powell, “A rapidly convergent descent
method for minimization,” Computer J., vol. 6, 1963.

III ­ 171



[5] J. Nelder and R. Mead, “A simplex method for function mini-
mization,” Computer J., vol. 7, 1965.

Fig. 1. (top) WHT and (bottom) PWHT of the sum of two
chirp signals at 0 dB SNR.
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Fig. 2. Single-component linear FM estimation variance,
simulated, theoretical and the CRB.
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Fig. 3. PWHT for M = 15 (top) and M = 35 (bottom) of
the experimental micro-Doppler data, evaluated for B = 16
Hz.
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Fig. 4. Estimated micro-Doppler signatures from the initial
grid search with M = 15 (solid black) and optimization of
the PWHT function with M = 35 (dashed white), overlaid
on the PWVD of the data computed with M = 35.

III ­ 172


