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ABSTRACT 

The fractional Fourier transform (FrFT), which is a 
generalized form of the well-known Fourier transform, has 
only recently started to appear in the field of signal 
processing. This has opened up the possibility of a new 
range of potentially promising and useful applications. In 
this paper we apply the new FrFT-based Chirp Scaling 
Algorithm (CSA) to a high resolution-high focused Synthetic 
Aperture Radar (SAR) imaging and compare its 
performance with the classical CSA based on the Fast 
Fourier Transform (FFT). Simulation results show that the 
FrFT-based CSA can offer significantly enhanced features 
compared to the classical FFT-based approach.   

1. INTRODUCTION 

The fractional Fourier transform (FrFT) was derived by 
Namias in the 80s as a new mathematical tool in order to 
deal with certain problems in quantum mechanics [1].  The 
first introduction to the application of FrFT in signal 
processing was published by Almeida [2]. A more recent 
introduction to the FrFTs and their applications is given in 
[3,16-17], which describe a number of promising research 
areas for further investigation including radar applications 
involving the use and detection of chirp signals, pattern 
recognition and Synthetic Aperture Radar (SAR) image 
processing.  
Imaging radars typically provide a two-dimensional 
representation of scatterer in the illuminated volume with no 
resolution or positioning of scatterers in the third dimension. 
Generally, we speak of radar resolution in the range and 
cross-range or azimuth directions. The Chirp Scaling 
Algorithm (CSA) [4] is one of the most important and well-
known radar imaging algorithms. It is attractive because of 
its excellent focusing ability and implementation simplicity. 
Benefiting from the inherent structure of the FrFT for non-
stationary digital signal processing and analysis, especially 
for chirped-type signals, a new version of the CSA based on 
the Fractional Fourier Transform (FrFT) was introduced in 
[5]. The new Fractional Chirp Scaling Algorithm (FrCSA) 

was shown to significantly outperform the conventional CSA 
in terms of resolution, SNR and sidelobe suppression. 
In this paper, we use the FrCSA to obtain a high resolution – 
high focused SAR imaging and compare this result with that 
of the classical FFT-based CSA. The rest of this paper is 
organized as follows: Section 2 introduces the FrFT and its 
various mathematical properties. Section 3 presents the 
mathematical model for the FrCSA. This is followed by 
some simulation experiments described in Section 4. Finally, 
some concluding remarks and future work proposals are 
given in Section 5.   

2. THE FRACTIONAL FOURIER TRANSFORM 

As the classical Fourier transform (FT) corresponds to a 
rotation in the time-frequency plane over an angle 2/πα = , 

the FrFT can be considered as a generalized form that 
corresponds to a rotation over some arbitrary angle 

2/πα a= with ℜ∈a  . 

The continuous 1-D FrFT is defined by means of the 
following transformation kernel [2]: 
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Given that F is the Fourier transform operator and α

rF  is the 

fractional Fourier transform operator, then the fractional 
Fourier transform possesses the following important 
properties: 
1) Zero rotation: IFr =0        

2) Consistency with Fourier transforms: FFr =2/π

3) Additivity of rotations: βααβ += rrr FFF

4) 2π rotation: IFr =π2

5) Inverse FrFT: )()(1 αα −=−

rr FF

In addition, the FrFT kernel has the following properties, 
which will be of interest in this work: 
1) ),(),( tuKutK αα =
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 , where * indicates the complex 

conjugate 
Further properties of the FrFT and sample transforms of 
some common functions can be found in [2][3]. 
Formally, the fractional Fourier transform of an arbitrary 
function x(t), with an angle α, is defined as: 
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Equation (2) shows that for angles that are not multiples of 
π, the computation of the FrFT corresponds to the following 
steps: 

1-A product by a chirp 
2-A Fourier transform (scaled by Csc(α)) 
3-Another product by a chirp 
4-A product by a complex amplitude factor 

In summary, the FrFT is a linear transform, continuous in the 
angle α, which satisfies the basic conditions for it to be 
meaningful as a rotation in the time-frequency plane. 

3. FRACTIONAL CHIRP SCALING ALGORITHM 

The conventional FFT-based CSA block diagram is 
illustrated in Figure 1, note that the algorithm uses FFTs and 
complex vector multiplications. This is the main reason for 
the CSA’s accuracy and efficiency [4]. There are some 
important issues related to the CSA applicability and 
performance. The CSA relies on some approximations most 
likely to be satisfied in SAR systems with small bandwidth-
to-center frequency ratios and small coherent integration 
angles. In addition these approximations result in a residual 
2-D space-variant phase effect in the final image.  The use of 
the space-invariant matched filters is also a primary limiting 
factor in the CSA performance. For SAR systems that 
employ chirps for transmitted pulses, chirp-type 
interferences caused by moving objects in the terrain should 
be removed if high-resolution imaging is to be achieved. 
These factors have been widely researched with the aim of 
improving the CSA’s overall functionality and behavior. 
Yet, all the improvements or comparisons to the CSA to-
date are FFT-based [6-8]. The most important parameter for 
the CSA is its inherent dependency on chirping which is 
used both in the transmission and reference signals thus 

benefiting from the great advantage of using the FrFT in 
detecting Linear Frequency Modulated (LFM) signals.
A new FrFT-based Chirp Scaling Algorithm, termed the 
“Fractional Chirp Scaling Algorithm”, FrCSA is illustrated 
in Figure 2. This algorithm involves the development of a 
model for transformation optimization in order to obtain the 
proper rotation angle α (required for the received chirped 
signal and all reference signals used in the algorithm). The 
model shown in Figure 2 uses a Local Optimization 
Procedure (LOP) [9] that investigates all possible rotation 
angles and selects the optimum value which is stored and 
used throughout the algorithm. The new FrCSA replaces all 
the FFTs modules in the conventional CSA with FrFTs as 
illustrated in Figure 2.  

One of the most important steps in the FrFT computation is 
in range transformation processing and its fractional 
correlator based range matched filter [10]. It is indeed this 
new module that gives the FrCSA its unique strength relative 
to the FFT-based CSA in handling signals particularly at the 
far end of the scene. 
Table 1 illustrates the differences between the conventional 
CSA and the new FrCSA. The CSA relationships shown in 
table 1 are taken from [11]. The relationships for the FrCSA 
have been mathematically derived and the expressions are 
shown in table 1. These show the effect of using the FrFT in 
place of the classical FFT. The modification parameter, D, is 
scaled according to the optimum rotation requirements for 
the transform. The dependency of the two matched filter 
reference functions on the rotation angle results in optimal 
sidelobe reduction. 

Fig. 1.  FFT-based Chirp Scaling Algorithm [4] 
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4. RESULTS 

The L-band SAR parameters from [11] were used to 
compare the differences in the constructed images from both 
of the conventional CSA and the new FrCSA. The 
computational cost of the FrCSA was approximately six 
times that of the CSA, as measured on a standard computer 
with 2.4 GHz speed and 512 MB RAM. This is because of 
the additional computational cost required for the 
transformation optimization module (best α generator) to 
detect the azimuth/range chirp rate of the signal being 
transformed and to produce the appropriate transformation 
order required for optimum azimuth/range-FrFT output 
response. Sample results for a unity power strength point 
target placed at the far range of the scene at position (135m, 
138m, 0) are shown in figure 3 (zoomed). As the target is at 
the far range of the scene the complex returns exhibits 
severe range curvature resulting in difficulties obtaining the 
resolved processed target. Figure 3(a) is the contour plot of 
the CSA normalized complex image, and figure 3(b) is the 
contour plot of the FrCSA normalized complex image. From 
these images we note that the sidelobes of the FrCSA are 
much better suppressed than that of the CSA. The resolution 
of the point targets for the FrCSA is better than that of the 
CSA.  
Optimum filtering in this fractional domain [10] is now used 
to extract the power spectrum density (PSD) plots of the 
CSA and the FrCSA producing Figure 4(a) and 4(b)  

respectively.  It can be seen that relative to the classical 
FFT-based CSA, the new FrCSA delivers an enhanced 
Signal-to-Noise Ratio (SNR). Computing the simulated 
targets SNRs outputs for the FrCSA and CSA, a 14 dB 
increase in the SNR of the FrCSA over the CSA was 
achieved. Furthermore from Figure 4, it is observed that the 
FrCSA offers better focusing capabilities and greater Side 
Lobe Reduction Ratio (SLRR). Notice that all these benefits 
are obtained, without the need for any additional focusing or 
enhancement techniques (required in classical FFT-based 
CSAs [12-14]).

5. CONCLUSION 

Signal History 
(Chirped in range and azimuth) 

Range FrFT 

Range IFrFT 

Best α generator 

Scaling 
Chirp Scaling Ref. Fn

Range Matched Filter 

2D Phase Compensation 

Az-IFrFT 

SAR signals parameters 

(Azimuth Matched Filter) 

Complex Image 

Az-FrFT 

 R-FrFT 

R-IFrFT 

Fig. 2.  FrFT-based Chirp Scaling Algorithm (a) (b)
Fig. 3.  Point target at the far range of the scene window (zoomed) for 

(a) CSA and (b) FrCSA 

(a) (b) 
Fig. 4.  Normalized PSD comparison of (a) CSA and (b) FrCSA 

TABLE 1 CSA / FRCSA PARAMETERS COMPARISON AND SYMBOLS
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5. CONCLUSIONS 

The Wigner distribution (WD) is one way of viewing  the 
energy distribution of a signal in time-frequency domain. 
The FrFT rotates the WD in clockwise direction by an angle 
α in the time-frequency plane. In this way, the chirp signal is 
converted to a harmonic signal as there exists an optimum 
order of transformation for which the signal is compact. The 
method used for obtaining the optimum order of 
transformation is based on frame-by-frame process. In 
practice, the optimum parameter requires an efficient online 
procedure for its computation. 
The Fractional Chirp Scaling Algorithm (FrCSA) has been 
applied for high resolution-high focused SAR imaging and 
initial results appear promising. The software 
implementation of the proposed algorithm, which is based 
on the continuous 1-D FrFT, was found to exhibit long 
processing times and large memory usage requirements. This 
can be overcome by hardware implementation using suitable 
parallel processors as in [15]. In addition, using a fast FrFT-
code may be very useful in tackling this problem. However, 
the existence of efficiently and accurate digital fast FrFT 
code has not yet been developed [17]. In addition, the novel 
use of the 2-D Affine Generalized Fractional Fourier 
Transform (AGFFT) [18] in the FrCSA is under 
development. The proposed FrCSA in its basic form opens 
the field for a wide area of research that could result in the 
development of a new generation of high resolution – high 
focused SAR imaging algorithms. 
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