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ABSTRACT

For most buildings, virtually all subsystems such as fans, genera-
tors, and motors generate acoustic energy. This acoustic energy
can weakly penetrate walls and pass through hallways and con-
duits. The propagation paths are complex and, given the typically
low energy of received acoustic signals, present challenges for
the detection and classification of the subsystems. While conven-
tional approaches would not be expected to work under these
difficult conditions, a key observation can be made: these types
of subsystems produce line spectra which consist of harmonics of
a fundamental frequency. Acoustic propagation effects then
strongly affect the relative energy of these harmonics. Modula-
tion spectra, which make use of the frequency spacing instead of
the relative energy of the harmonics, are especially insensitive to
these frequency-dependent acoustic attenuation affects. When
combined with temporal averaging and 3-dimensional spatial
(over an array of acoustic sensors) processing, enhanced modula-
tion spectra offer a new approach to the detection and classifica-
tion of building subsystems which produce sound.

1. INTRODUCTION

Monitoring of mechanical systems within building has mainte-
nance, security, and defense application. However, little work
has been done in the area of in-building acoustic signature identi-
fication. Simply acquiring large amounts of sampled acoustic
data with high resolution time synchronization would not neces-
sarily lead to reliable identification of types of subsystems. The
scope and complexity of the type of sounds encountered in a
typical building, combined with the multitude of complex and
unknown acoustic propagation paths, make the problem difficult.
Discovery of a useful and robust solution for field deployment
requires a new approach to signal representation. A key observa-
tion can be made: mechanical subsystems produce line spectra
which consist of harmonics of a fundamental frequency of rotat-
ing elements and/or power line frequencies. Acoustic propaga-
tion paths strongly affect the relative energy of these harmonics.
A signal representation concept called the “modulation spec-
trum,” which makes use of the frequency spacing instead of the
relative energy of the harmonics, is especially insensitive to these
frequency-dependent acoustic attenuation affects. When com-
bined with temporal averaging and 3-dimensional spatial (over
an array of acoustic sensors) processing, modulation spectra offer
a new approach to the detection and classification of building
subsystems which produce sound.

It can usually be assumed that building subsystems such as

operating motors, fans, generators, compressors, centrifuges,

lights, and other industrial equipment operate off the power

mains. This power supply is typically a steady 60 Hz or 50 Hz

signal. There are some exceptions, such as battery-powered

inverters which approximate the 50 Hz or 60 Hz signal and air-

craft electrical systems which operate at 400 Hz. For all of these

cases, there are strong harmonics of the power mains each of

which typically rise 20-40 dB above the background sound level

of the machine [1]. Even harmonics usually dominate with at

least eight and typically many more even and odd harmonics

apparent. Also, due to the common use of gear and belt speed

reduction systems, energetic lower frequency sub-harmonics are

also often present. For remote acoustic observation of a machine,

complex acoustic propagation paths will greatly change the rela-

tive magnitudes of the harmonics. Some will be fully attenuated

yet others will pass with relatively little attenuation. Most impor-

tantly, the relative distance in frequency location between

harmonic will not be affected by complex acoustic propagation

paths, and hence becomes the foundation of our new approach to

detection of sub-audible sub-systems.
With the subsystem assumed to be several rooms and floors

away from acoustic sensors, acoustic energy can drop substan-
tially to inaudible levels, yet still needs to be detectable. The
proposed modulation spectral analysis, called the enhanced
modulation spectrum, is capable of exploiting the temporal and
3-dimensional spatial information received from the sensors.
Using space-time averaging, the resulting modulation spectrum
can reduce the undesirable random effect, for example back-
ground noise, and generate useful features for acoustic classifica-
tion. The acoustic signature output has the potential to extract
time-varying information via the nonzero terms (bright colors in
Fig. 3d, 4b, and 5b). These nonzero terms are possibly useful for
discriminating and classifying rotating machine types.

2. MODULATION SPECTRUM

2.1. Conventional methods

Given the time signal, x(t) , there are various ways to estimate a
modulation spectral representation. One of the most widely
known methods is related to a Wigner distribution by a Fourier
transform in time, t , and time lag, � , of the local autocorrela-
tion of the time signal [2].
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� and � are referred to “acoustic” and “modulation” fre-
quency, respectively. As shown in [3], P(�,� ) could generate
cross-term interference and poor energy compaction in the esti-
mate. To remove these undesirable terms, smoothing methods
have been applied. If the statistics of the signal spectrum change
periodically with period T

0
and it is priorly known, the cyclic

spectrum [4] P
CY
(�,� ) , can be approximated by temporal aver-

aging of P(�,� ) .
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Figure 1: A generic block diagram of modulation spectral

analysis

Since this approach assumed the periodicity in the local autocor-
relation with a period T

0
, i.e. x* (i)x(�) = x* (i + nT

0
)x(� + nT

0
) , a

Fourier series expansion is instead applied in Equation (2) caus-
ing a major difference between P(�,� ) and P

CY
(�,� ) in the �

dimension. � has continuous values in (1) while � in (2) be-
comes discrete representing every harmonic of the fundamental
frequency, 1 T

0
. As shown in [3], P

CY
(�,� ) yields smooth esti-

mates but it still provided redundant terms occurring in very high

� . This coherent method relies on the accurate estimate of a
period T

0
which is difficult to estimate for arbitrary signals such

as speech, music, or in-building machine signals. To obtain better
cross-terms and redundancy reduction, an incoherent approach
which makes use of a two-dimensional smoothing function and
does not require prior estimate of a period T

0
is considered. A

common approach is to first exploit the inherent smoothing prop-
erties of the spectrogram resulting in the “modulation spectrum”
[5]. First, a spectrogram with an appropriately chosen window
length, w(t) , is used to estimate a joint time-frequency represen-
tation of the signal. Then, a Fourier transform is applied along
the time dimension of the spectrogram, yielding an estimate of
the modulation spectrum.
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In speech or music applications, an auditory filterbank, e.g. mel-
spaced filters, is alternatively chosen [6-9] to uniform spaced
filters of spectrogram. The generic diagram can be illustrated in
Figure 1. First the waveform is assumed to be band-limited, with
f
m

min and f
m

max as the lowest and highest modulation frequencies
in Hz. The digitized signal, with sample length L and sampling
rate F

s
Hz, is decomposed by an auditory filterbank. In order to

represent f
m

min , the minimum length of L is at least F
s
f
m

min

samples. For example, at least 100 ms of waveform signal is
required to capture a 10 Hz modulation frequency. The decima-
tion step, D or the amount of nonoverlapping for each frame,
reduces the amount of data (i.e. sampling rate) in each channel.
The upper bound for D to avoid the possibility of subsequent
aliasing of the subband signals depends on f

m

max and a type of an
envelope detector, e.g. magitude-square, absolute square, or Hil-
bert. For example, D would be smaller than F

s
4 f

m

max when
using magnitude square operator. Continuing to work through
Figure 1, a modulation filterbank is applied for each channel
independently. For implementation purposes, demeaning and a
taper window can be used to reduce the sidelobes of the subse-
quent modulation frequency estimate. The specification of the
modulation filterbank, the center frequencies or number of chan-
nels, depends on the each application. Normally, the center fre-
quency is up to a few hundred hertz and the number of modula-
tion filters is between 8 and 13.

2.2. Enhanced modulation spectrum

For a large in-building subsystem detection and classification, it
is desirable to be capable of deploying a three-dimensional sen-
sor network to collect, process and transmit relevant acoustic
data to a central server for further analysis and coordination
among sensors which are tuned to listen for periodic modulating
sounds emitted from localized sources such as operating motors,
generators, compressors, fans, centrifuges, lights, and other rele-
vant industrial equipment. A significant problem in such sensor
deployments is how modulation spectra can be estimated using
data from each sensor within this 3-dimensional space. The en-
hanced modulation spectral processing should concentrate inter-
acting harmonics into modulation frequency points that are ro-
bust to unknown propagation paths, allowing dramatically im-
proved detection capabilities for rotating sound sources. In this
paper, we present the new approach, called the enhanced modula-
tion spectrum, exploiting the temporal and spatial averaging
which can further increase detection sensitivity.

Figure 2: A block diagram of enhanced modulation spectral

analysis

As illustrated in Figure 2, the enhanced modulation spectrum
starts with a standard spectrogram applied to the data retrieved
from the i

th
sensor, X

si
. Then, an averaged short-term spectral

estimate of the signal is computed by integrating P
SP,i

t,�( ) over
t .

P
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After a Fourier transform is applied along the time dimension

P
SP,i

�,�( ) = P
SP,i

t,�( )e� j�t dt
��

�

� , (5)

the modulation spectral representation for each time frame, n, is

estimated by the product of normalized short-term spectral esti-

mate and modulation spectrum.

P̂
SP,i

n( ) �,�( ) = P
SP,i

n( ) �( )
P
SP,i

n( ) �( )
1

P
SP,i

n( ) �,�( ). (6)

When combined the temporal (N ) and space (M ) averaging,

the enhanced modulation spectral representation becomes
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Figure 3: Enhanced modulation spectrum for hotwater pump acoustic sound: (a) time domain; (b) spectrogram representation;

(c) modulation spectrum representation for 12 frames; (d) space-time averaged modulation spectrum representation.
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For the implementation purpose, the subband energy normaliza-

tion, mean subtraction, and window tapering can be applied to

Eq. (5) to improve modulation frequency detection sensitivity.

3. EXPERIMENTS

3.1. Data Collection

The audio data used here were recorded from the in-building
subsystems located at the department of electrical engineering,
University of Washington, and Virtual DSP Corporation. Each
datafile was recorded using Casio DAT player with the sampling
rate 48 KHz and stereo channels. The dataset contained 3 differ-
ent sound classes, i.e. a building’s operating hotwater pump,
chiller, and fan. For classification purpose, we split the data
equally into training and testing sets, without any overlap. A
white Gaussian noise at 10dB and 0dB SNR levels was also
added to the clean signal on both sets to generate a stereo data-
base, i.e. the data containing clean signal and their corresponding
noisy counterparts. In total, about 500 enhanced modulation fea-
ture frames were available for training and testing.

First, we showed examples of the proposed technique. In
Fig. 3, the acoustic sound collected from hot water pumps was
resampled to 8 KHz and shown in Fig. 3a. A spectrogram was
then computed using a Hanning window of length 128 samples
and a window shift of 64 samples thereby reducing the subband
sampling rate to 125 Hz. As illustrated in Fig. 3b, another 1 sec-
ond window is applied to block the spectrogram data, with 500
ms overlapped between each block, and the corresponding modu-
lation spectrum for each frame was estimated and illustrated in
Fig. 3c. The enhanced modulation spectrum which exploited the

time (12 frames within 6 seconds) and spatial (2 channels) aver-
aging showed the distinct compaction of high energy occurring
low modulation frequencies, 5 Hz, at acoustic frequencies 200
and 800 Hz. We could notice its smoothness compared to the
single modulation spectral frame in Fig. 3c. The same technique
and parameters applied to different acoustic sounds generated
from a chiller and fan, gave us the results as shown in Fig. 4 and
5, respectively. Since they were generated from different sources,
we were able to see the significant differences in terms of the
high energy location (red color) in outputs of Fig. 4b and 5b. A
chiller sound yielded the distinct compaction of high energy oc-
curring at 30 Hz modulation frequency while a fan sound pro-
duced the dominant modulation frequency at 45 Hz.

3.2. Feature Extraction and Classification

After generating two-dimensional enhanced modulation spectrum
features, P

ENSP
�,	( ) , post processing was applied in order to

reduce the large dimensionality and to make the features insensi-
tive to variation, for example, acoustic and time shifts. Past re-
search has addressed various ways of reducing the feature dimen-
sionality of a two-dimensional representation. One method is by
viewing these features as an image. The small set of descriptors
being invariant to acoustic frequency and time shift can be ex-
tracted using singular value decomposition (SVD). As shown in
[3], SVD applied to modulation features improved the error re-
duction in signal interception application. Finally, the 1-second
data was represented by 1x63 vectors.

Classification of a test signal was performed after feature
extraction using a k-nearest neighbor classifier. This method does
not assume any prior distribution of data. Given a test feature
vector, the decision is chosen to be the class that is most com-
monly represented in the k closest neighbors, assuming equal
training samples and prior class probability. In this paper, we
experimented with various k values (from 1 to 20) and chose the
one giving the best accuracy.
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Figure 4: Enhanced modulation spectrum for chiller acoustic

sound: (a) spectrogram representation; (b) space-time aver-

aged modulation spectrum representation using the same

technique and parameters as in Figure 3.

Figure 5: Enhanced modulation spectrum for fan acoustic

sound: (a) spectrogram representation; (b) space-time av-

eraged modulation spectrum representation using the same

technique and parameters as in Figure 3.

3.3. Results

The first set of experiments was to choose the k value that
would be used for other experiments. Mel frequency cepstral
coefficients (MFCC) were used as the baseline experiment.
These 13 cepstral features were estimated using 40 frames per
second. The first coefficient was removed due to energy sensi-
tivity and the first and second order differences were combined
to form 36 coefficients.

As shown in Table 1, using 36 dimensional MFCC fea-
tures yielded the highest accuracy of 55.7% with k = 8. While
conventional modulation spectral features, as described by (3),
combined with a SVD, provided a much improved accuracy of
89.1%. When applying the same classifier structure with the
proposed enhanced modulation spectral features, the accuracy
became 98.0%. Note that the output decision was made for
every half second for all feature sets. Since 1-NN does not
require any parameter, we also used it for comparing the per-
formance of different features. As shown in Table 1, enhanced
modulation spectral features provided the higher accuracy re-
sults compared to other two features.

Next, the optimal subset of features was searched for
comparing the same feature dimensionality. Fisher’s discrimi-
nant ratio [10] was considered for feature selection. Using k=1,
the highest accuracy for MFCC features was 59.5%, using sub-
set 14 coefficients. When subselecting modulation features to
the same number coefficients, the improved performance of
enhanced modulation spectral features was also seen in this
test, as shown in the last three rows of Table 1.

Table 1: The accuracy performance of different features

using k-NN classifiers.

Features #dim 1-NN 8-NN

MFCC + � +�� 36 52.8 % 55.7 %

Modulation 63 89.8 % 89.1 %

Enhanced Modulation 63 97.2 % 98.0 %

MFCC + � +��
+ Feature Selection

14 59.5 % 62.6 %

Modulation
+ Feature Selection

14 83.0 % 86.1 %

Enhanced Modulation
+ Feature Selection

14 89.0 % 91.4 %

4. CONCLUSIONS

We present a new modulation frequency analysis with applica-
tion to in-building acoustic signature identification. The new
approach incorporates temporal averaging and 3-dimensional
spatial (over an array of acoustic sensors) processing resulting
in the high concentration of interacting harmonics from the
spectrogram representation into modulation frequency repre-
sentation. After post processing using a singular value decom-
position, it provides dramatically improved detection and clas-
sification for rotating sound sources. When the enhanced
modulation spectrum is compared to cepstral features and the
conventional modulation spectrum for in-building acoustic
signature identification using a k-nearest neighbor classifier,
the new approach provided a substantially lower error rate,
with or without feature selection for dimensionality reduction.
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