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ABSTRACT

This paper discusses a processing technique for Laser Dop-
pler Velocimetry (LDV) data, enabling to detect and local-
ize in time domain the presence of Doppler bursts in case
of acoustic excitation. A joint detection-estimation scheme
based on the use of the Wavelet Transform (WT) realized in
the time-scale domain is proposed. The performances of the
detector are characterized with ROC (Receiver Operating
Characteristic) curves. Finally, the estimator performances
are studied by means of Monte Carlo trials obtained from
synthesized LDV signals.

1. INTRODUCTION

LDV is an optical technique based on interferometry [1].
In the dual beam mode, two laser beams are crossed and
focused at a point called probe volume, made of dark and
bright fringes. The basic principle of LDV consists in mea-
suring the frequency of the light scattered by tracers intro-
duced in the fluid, the estimation of this frequency leading
to the estimation of the tracer velocity. For acoustic excita-
tion, the analyzed signal, called Doppler signal, is frequency
modulated and the frequency modulation gives information
about the acoustic particle velocity using signal processing
methods developped over the last ten years [2]. When many
tracers cross the probe volume at different random times,
the estimation of the flow and acoustic velocities needs to
establish if a particle crosses the probe volume (detection /
decision problem) on the one hand and to estimate the cen-
tral time and the time of flight of each particle on the other
hand (estimation problem). The aim of this work is to de-
velop and validate a technique for detecting burst and for
estimating the central time and the time of flight of each
particle. This article is organized as follows. General LDV
principles are presented in section 2 and the application of
LDV to acoustics in explained in section 3. The detection-
estimation scheme based on WT is presented in Section
4. Finally, in Section 5, numerical examples illustrate the
performances of the detector with ROC (Receiver Operat-
ing Characteristic) curves. The estimator performances are
given with a statistical analysis of the estimations, by means
of Monte-Carlo simulations.

Fig. 1. Optical set-up of the LDV system.

2. LDV PRINCIPLES

Principle of LDV is described in figure 1. Two laser beams
are crossed and focused to define a probe volume in which
an interference pattern, made of bright and dark fringes, ap-
pears. The light scattered by a particle crossing the probe
volume is modulated in intensity with a frequency

FD =
V

i
= DV =

2 sin(θ/2)
λ

V, (1)

where V is the component of the velocity �V perpendicular
to the fringes, i is the space between two adjacent bright
fringes, D = 1/i is the sensitivity of the set-up, λ is the
laser light wavelength, and θ is the angle between both beams.
In order to avoid any ambiguity on velocity sign, the in-
terference fringes are frequency shifted with the help of a
Bragg cell at frequency FB (40 MHz). If only one particle
q crosses the measuring volume, the electrical signal deliv-
ered by the photo-detector, called burst, is

sq(t) = Aq(t){M + cos[2πFBt + 2πDxq(t) + φ0]}, (2)

where Aq(t) = Ke−{βxq(t)}2
represents the magnitude of

the Doppler signal related to particle q, β being related to
the probe geometry, M is due to the positive sign of light
intensity, xq(t) is the position of the particle q in the probe
volume frame and φ0 is an initial phase due to optics. Thus
the signal is roughly a sine-wave frequency modulation of
a carrier frequency FB with a time varying amplitude. The
offset component M is eliminated by an electrical high-pass
filter. If many particles cross the probe volume, the sig-
nal is the sum of multiple burst with random central times
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Fig. 2. Scheme of quadrature demodulation technique.

[1]. Signal processing methods [2] need to define the ana-

lytic signal zq(t) of sq(t), written as zq(t) = Aq(t)ejφq(t)

where φq(t) = 2πDxq(t) + φ0 (zero carrier frequency). In
practice, zq(t) is approximated by zq(t) = sq1(t) + jsq2(t)
where

sq1(t) = Aq(t) cosφq(t) + b1(t), (3)

sq2(t) = Aq(t) sin φq(t) + b2(t), (4)

b1(t) and b2(t) being sequences of zero-mean independant
Gaussian random variable. sq1(t) and sq2(t) are obtained
thanks to a Quadrature Demodulation (QD) technique (fig-
ure 2) which shifts down the carrier frequencyof the Doppler
signal to zero.

3. LDV APPLIED TO ACOUSTICS

In case of acoustic sinusoı̈dal excitation at frequency Fac,
the velocity of a tracer q can be written

vq(t) = Vf,q + Vac cos(2πFact + φac), (5)

where Vac is the amplitude of the acoustic velocity, φac the
acoustic velocity phase and Vf,q the flow velocity of particle
q, supposed as constant in the probe volume. Typically the
flow velocity leads between 50 and 400 mm/s for useful
acoustic measurement without forced flow. The position of
the particle in the probe volume frame is defined by

xq(t) = Vf,q(t − tc,q) +
Vac

2πFac
sin(2πFact + φac), (6)

where tc,q is the time at which the particle reaches the center
of the probe volume without acoustic excitation, called cen-
tral time. The aim of signal processing in LDV is to estimate
Vac, φac and Vf,q from sq1(t) and sq2(t). For this, the ana-
lytic signal zq(t) corresponding to single burst q is analysed
by time frequency transforms for t ∈ [tc,q − Tf,q/2, tc,q +
Tf,q/2], where Tf,q is the time of flight of particle q defined
by

Tf,q = 4σq, (7)

with

σq =
1√

2βVf,q

. (8)

For multiple bursts, the estimation of the three parameters
Vac, φac and Vf,q can only be performed if each burst is
detected and if the central time tc,q and the time of flight
Tf,q are estimated.

4. WAVELET DETECTION-ESTIMATION

This section presents the detection of burst in a Doppler sig-
nal and the estimation of central time and time of flight us-
ing the Wavelet Transform. This approach is based on pre-
vious work concerning Doppler signal analysis [3, 4, 5].

4.1. Continuous Wavelet Transform (CWT)

Continuous Wavelet Transform (CWT) is defined by

Ws(t0, a) = 〈s, ψt0,a〉 =
∫ +∞

−∞
s(t)

1√
a
ψ∗(

t − t0
a

)dt,

(9)
where the base atom ψ is a zero average function with a
finite energy. All the basic vectors can be obtained from
this function ψ by scaling and time-shifting [6]:

ψt0,a(t) =
1√
a
ψ(

t − t0
a

), (10)

with a the scale parameter and t0 the shifting parameter.
The square modulus of the wavelet coefficients |Ws(t0, a)|2
are used to represent the CWT on a time-scale representa-
tion (t0, a), called scalogram (figure 3.b). An analogy in
time-frequency can be realized with f ≡ f0/a, where f0 is
the central frequency of the Fourier Transform ψ̂t0,a(f).

According to its time and scale resolution properties, CWT
is well-suited to analyse long burst linked to low frequency
and short burst linked to high frequency [6].

Morlet wavelet [6], ψ(t) = (πt0)−1/4e
1
2 ( t

t0
)2ej2πf0t, has

been chosen as analysing wavelet, according to its similari-
ties with the expression of the burst signal zq(t) (§2).

4.2. Proposed method

The detection-estimation scheme leads to localize the bursts
in the time domain thanks to an estimation of the central
time t̂c,q and the time of flight T̂f,q (figure 3.a).

4.2.1. Detection

The burst detection problem is a binary hypothesis prob-
lem. It consists in determining if one or multiple bursts are
present (hypothesis H1) or not present (hypothesis H0) in
an signal sTw(t) observed in a noisy environment during
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Fig. 3. (a) : Synthetized Doppler burst, (b) : Scalogram of
the Doppler burst (Fac = 4000 Hz, α = 0.01 and Vf,q =
200 mm/s).

TW = 10σ̂q (eq. 8). This can be written as

H0 : sTW (t) = b(t),

H1 : sTW (t) = b(t) +
∑

q

sq(t). (11)

The detector indicates the presence of signal on the window
TW when the following test is achieved:

[|Ws(t0, a)|2]
TW ,max

> γ.
[|Wb|2

]
max

, (12)

where
[|Ws(t0, a)|2]

TW ,max
is the maximum of scalogram

on TW , γ is a threshold defined by the user and
[|Wb|2

]
max

is the maximum of the scalogram of a noisy portion of the
tested signal (reference value).

4.2.2. Estimation

The estimation procedure of the central time t̂c,q and the
time of flight T̂f,q is performed in two steps. The first step
consists in getting a more accurate localisation of the de-
tected information in time-frequency domain (figure 3.b).
The second step leads to an estimation of the time parame-
ters ( t̂c,q, T̂f,q).
To realize the pre-estimation, two standard deviations ∆̂t0

and scale ∆̂a are calculated in time and scale. The time
width T̂ and the scale width Â are determined by searching
α in order to obtain:

|Ws(T̂ , Â)|2 > γ
[|Wb|2

]
max

, (13)

with T̂ = α∆̂t0 , Â = α∆̂a and |Ws(T̂ , Â)|2 the scalogram
coefficients localized in the time-scale domain (T̂ ,Â). The
time standard deviation ∆̂t0 is calculated as follows:

∆̂2
t0 =

∫
TW

(t0 − t̂0)2|
∫

a Wsda|2dt0∫
TW

|∫a Wsda|2dt0
, (14)

where

t̂0 =

∫
TW

t0|
∫

a
Wsda|2dt0∫

TW
|∫

a
Wsda|2dt0

, (15)

where Ws = |Ws(t0, a)|2 and TW is the scalogram win-
dow. The same calculations are carried out for ∆̂a.
The second step leads to the central time t̂c,q and the time
of flight T̂f,q estimations. t̂c,q is calculated from width T̂ by
derivating the marginal of the scalogram along the time axis

ξderiv,t0 =
d

dt0
(
∫

a

|Ws(t0, a)da|2). (16)

Scalogram maximum are localized thanks to zero crossing
of the derivative ξderiv,t0 , and scalogram maximum leads
to bursts envelop maximum. Then, zero crossings give an
estimation of burst central times t̂c,q. The time width T̂f,q

is estimated using the derivative of the marginal along the
frequency axis ζderiv,f given by

ζderiv,f =
d

df
(
∫

t0

|Ws(t0,
f0

f
)dt0|2), (17)

thanks to the analogy a ≡ f0/f (§4.1). All zero crossings
of ζderiv,f give an estimation of the mean frequency of the
burst DV̂f,q . The flow velocity V̂f,q is linked to the standard
deviation of the burst envelop σ̂q (eq. 8). So, the frequency
axes leads to a time of flight estimation T̂f,q (eq. 7) for each
burst.
In practice, the derivated functions ξderiv,t0 and ζderiv,f are
calculated with a finite difference method (Euler’s method).

4.2.3. Cramer Rao Bounds

Cramer-Rao Bound (CRB) gives the lower bound on the
variance of any unbiased estimator. CRB of the central time
tc,q and of the time of flight Tf,q have been calculated ac-
cording to Le Duff works [7]:

CRB(tc,q) =
1

4π2

√
2
π

βTf

D2

1
Vf,q

1
SNR

, (18)

CRB(Tft,q) =
1
π2

√
1
π

β2Tf

D2
σq

1
SNR

, (19)

with SNR the Signal to Noise Ratio.

5. RESULTS AND CONCLUSIONS

Detector validation and estimations are realized on simu-
lated data for 1000 Monte Carlo simulations (one event for
one simulation) at various SNR (Signal to Noise Ratio).
Each event contains at least one burst (H1) or no burst (H0)
(eq. 11).

Different parameters of the LDV system have been tested
as shown in table 1.

Signal parameters are β = 4.6407.104 m−1, D = 1.3126.
103 m−1, K = 1, φ0 = π and Te = 10−6 s.

Results presented in this paper are obtained with a set
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Fig. 4. ROC curves for wavelet detector (Fac = 4000 Hz,
Vf,q=200 mm/s and α = 0.01)

α = DVac/fac 10−2 1 10
fac (Hz) 100, 1000, 4000

Vc,q (mm/s) 20, 200

Table 1. Numerical values used for the simulations

of parameters corresponding to low acoustic displacement
amplitude and high convection flow which corresponds to
difficult conditions for the instantaneous frequency estima-
tor [2]. These conditions are defined by fac = 4000 Hz,
α = 0.01 (acoustic level of 58 dBSPL in free field) and
Vf,q = 200 mm/s. ROC curves (figure 4) show the detec-
tor behaviour for different SNR (0 dB, 3 dB, 5 dB, 10 dB).
Figure 5 presents the estimator bias and variance on flight
time Tf,q for two values of the threshold γ. As that was
expected results (bT̂f,q

and σ2
T̂f,q

) are better with an optimal

threshold γ, determined thanks to ROC curves (figure 4).
The error on the standard deviation σ T̂f,q

for the best esti-
mations, is at worse of 10 µs (SNR of 0 dB) and at best of
3 µs (SNR of 15 dB), with Tf,q = 176 µs for Vf,q = 200
mm/s. The bias bT̂f,q

is at worse of 0.5 µs (SNR 0 dB) and
at best of 0.1 µs (SNR 15 dB). The results about the central
time estimation t̂cq lead, for the same set of parameters as
before, to a standard deviation σ t̂c,q

which is at worse of 0.7
µs (SNR 0 dB) and at best of 0.1 µs (SNR 15 dB). The bias
bt̂c,q

is at worse of 0.2 µs (SNR 0 dB) and at best of 0.05 µs
(SNR 15 dB). Results concerning the detection-estimation
step in LDV set-up allows to optimize the estimators linked
to the caracterization of bursts (Vac, φac and Vf,q).
According to the experimental condition in which acoustics
measures are achieved, results obtained by the detection-
estimation procedure are satisfactory and will allow to im-
prove investigation tools dedicated to acoustics.
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