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ABSTRACT
We consider the problem of estimating the frequency of an un-

known periodic function from observations which consist of

a particular almost periodic function and additive white noise.

First, we propose a frequency estimator based on a penalized

least-squares approach and we explain how to implement it

in practice. Then, we compare its performances with the op-

timal ones forecast by a theoretical study. At last, we apply

our processing to some signals arising in laser vibrometry and

compare it with a classical technique in such a field.

1. INTRODUCTION

Let us consider the following model:

Xj = e2iπfdop j∆ s�(j∆) + ε1,j + iε2,j , 1 ≤ j ≤ n, (1)

where s� is a complex valued unknown periodic function with

unknown frequency f�, fdop is an unknown positive real pa-

rameter and the ε1,j’s, ε2,j’s are independent Gaussian ran-

dom variables of unknown variance (σ�)2. We also assume

that the ε1,j’s and ε2,j’s are independent. We are interested in

estimating the frequency f � of s�.

Such a problem arises in laser vibrometry which is a tech-

nique used for identifying, with a laser, a target by analyzing

its vibrations without any contact with it. Indeed, the signal to

analyze after emission of a laser wave and reflection on a vi-

brating object having a translation motion, satisfies model (1).

fdop is the frequency due to the Doppler effect and f � is the

vibration frequency of the object of interest if its vibrations

are assumed to be periodic. Since the vibration frequency

characterizes a vibrating object, the estimation of f � should

lead to its identification.

A relatively close problem has already been solved by sev-

eral authors in a parametric framework. Indeed, the regres-

sion function involved in model (1) is almost periodic and

thus can be approximated by
∑K

k=1 ak exp(iλkt) for some

λk ∈ R. Many papers study the parametric case which con-

sists in estimating (λk, 1 ≤ k ≤ K) from observations sat-

isfying the previous model when the regression function is∑K
k=1 ak exp(iλkt), K being known or not, see [1, 2].
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When K is large, a natural solution is to use a semipara-

metric approach. In the previous model, when λk = kλ1,

it consists in considering the regression function as an un-

known periodic function and just estimating the parameter λ1.

This idea has already been used by [3] who estimate f � from

model (1) in the particular case when the regression function

is periodic, i.e when fdop is equal to zero or to a multiple of

f�. [3] propose in this case a consistent and efficient estimator

of f� and [4] have implemented a method for estimating the

frequency of a periodic function in additive Gaussian white

noise without making any assumption on its shape.

In this paper, we exhibit in the semiparametric framework

of model (1), an estimator of f � which we implement and

apply to some synthetic data arising in laser vibrometry, thus

improving existing methods in this field.

2. THE ESTIMATION METHOD

Estimating f� from model (1) using the maximum likelihood

approach consists in minimizing the criterion

n∑
j=1

∣∣∣∣∣Xj −
K∑

k=−K

ak e2iπ(kf+fd)j∆

∣∣∣∣∣
2

(2)

with respect to fd, f and the coefficients (ak, −K ≤ k ≤
K) if the unknown periodic function s� is approximated by a

trigonometric polynomial: s(t) =
∑K

k=−K ak e2ikπft.

We can easily prove that the minimization of (2) with re-

spect to (ak) is approximated, for large n, by

n∑
j=1

∣∣∣∣∣Xj −
K∑

k=−K

dk(f, fd) e2iπ(kf+fd)j∆

∣∣∣∣∣
2

(3)

where dk(f, fd) = n−1
∑n

j=1 Xj exp(−2iπ(kf + fd)j∆).
The quantity (3) can be approximated, for large n, by

n∑
j=1

|Xj |2 − n
K∑

k=−K

|dk(f, fd)|2 .

Let ΛK(f, fd) =
K∑

k=−K

|dk(f, fd)|2. Thus, for every K ≥ 1,
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an approximated least-squares estimator of f � is

f̂(K) = Arg sup
f

(
sup
fd

ΛK(f, fd)

)
. (4)

Without any information on the real number of harmonics of

s�, K has also to be estimated. Indeed, one can see that max-

imizing supfd
ΛK(f, fd) with respect to both K and f may

lead to overestimate the real number of harmonics of s� and

to underestimate f�.

To avoid this overestimation of K, we shall use a penal-

ization approach where f � is estimated by f̂(K̂(β)), β being

a positive number to be chosen conveniently (we shall explain

how to do this in section 3) and

K̂(β) = Arg inf
1≤K≤Kmax

⎛
⎝ 1

n

n∑
j=1

|Xj |2 − sup
(f,fd)

ΛK(f, fd) + βK

⎞
⎠ .

Note that Kmax is an upper bound for the number of the most

significant positive harmonics of the periodic signal s�. Thus

defined, the estimator of f � is based on a penalized least-

squares criterion since 1/n
∑n

j=1 |Xj |2−sup(f,fd) ΛK(f, fd)
can be seen as an approximation of the residual variance when

a shifted trigonometric polynomial of degree K is fitted to the

observed sequence (Xj).

3. PRACTICAL IMPLEMENTATION ILLUSTRATED
ON PARTICULAR SYNTHETIC DATA

In this section, we shall explain how to compute the previous

estimator from synthetic data arising in laser vibrometry. If

we aim at analyzing the vibrations of an object consisting of

M punctual reflectors vibrating in a sinusoidal way, s� can be

written as follows

s�(t) =
M∑

m=1

am exp

(
4iπαm

λ
cos(2πf�t + ϕ)

)
, (5)

where am is the amplitude of the signal reflected by the reflec-

tor number m, αm its vibration amplitude, λ the laser wave-

length, f� is the vibration frequency of the vibrating object

and ϕ ∈ R. That is why we shall explain how to estimate the

frequency of the following simulated complex valued signal:

s�(t) = a exp(ic cos(2πf�t)),

where a = 0.08, c = 4π×20×10−6/λ with λ = 1.5×10−6

and f� = 30 Hz from the data: Xj = e2iπjfdop/ns�(j/n) +
ε1,j + iε2,j , 1 ≤ j ≤ n, with fdop = 200 Hz. Thus defined,

s� is a periodic function of frequency 30 Hz with about 168

(positive) harmonics at 30, 60, 90,. . . , 5040 Hz.

Figure 1-a displays the imaginary part of (s�(j/n), j =
1, · · · , 15000) with n = 218. Figure 1-b displays the peri-

odogram of (s�(j/n), j = 1, · · · , n) i.e the squared modulus
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Fig. 1. A synthetic signal ; (a) the imaginary part of

(s�(j/n), 1 ≤ j ≤ 15000), (b) the periodogram of s�.
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Fig. 2. The observed signal X ; (a) the imaginary part of

X = (Xj , 1 ≤ j ≤ 15000), (b) the periodogram of X .

of the discrete Fourier transform (DFT) of s� and computed

by a fast Fourier transform (FFT):

Is�(q) =
1

n

∣∣∣∣∣∣
n∑

j=1

e−
2iπqj

n s�

(
j

n

)∣∣∣∣∣∣
2

, 1 ≤ q ≤ 8000.

The periodogram of
(
e2iπfdopj/ns�(j/n)

)
is the same as the

one of s� except that it is shifted. The observed sequence

(Xj , j = 1, · · · , n) satisfies:

Xj = e2iπfdopj/ns�(j/n) + ε1,j + iε2,j , 1 ≤ j ≤ n, (6)

where (ε1,j) and (ε2,j) are independent Gaussian random vari-

ables with zero-mean and unit variance. Figure 2 displays

the imaginary part of (Xj , j = 1, · · · , 15000) and its peri-

odogram. The signal to noise ratio is so low that the deter-

ministic part of the observations cannot be visually detected.

3.1. Maximization of ΛK

For any K ≥ 1, it is impossible to maximize ΛK(f, fd) with

respect to (f, fd) in a closed-form. A numerical solution is to
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maximize ΛK on a grid: for any (f, fd) ∈ R
2
+ and for any

K ≥ 1, we define

Λ̃K(f, fd) =
1

n2

K∑
k=−K

|X̂(]kf + fd[)|2,

where ]u[ is the nearest integer to the real number u, X̂ is the

classical discrete Fourier transform of X defined by

X̂(l) =
n∑

j=1

e−
2ilπj

n Xj , 0 ≤ l ≤ n − 1.

Let (fm, m = 1, · · · , M) be the elements of a regu-

lar grid with fm+1 − fm ≤ 1/K. This ensures that ]kf [=
]kfm[, for any f ∈ [fm, fm+1) and any 1 ≤ k ≤ K. Fi-

nally, we shall take in the following simulations the fm’s in

the interval [10, 100] Hz with fm+1 − fm = 0.001 and fd

in a grid (fd,p, p = 1, . . . , P ) on [10, 100] Hz such that

fd,p+1 − fd,p = 0.01. Note that the fd,p’s are in the same

interval than the fm’s since we can assume that fdop < f�.

Indeed, otherwise, fdop = lf� + fr, where l ≥ 1, fr < f�

and exp(2iπfdopt) s�(t) = exp(2iπfrt) s̃(t) where s̃ is a

periodic signal having the same period as s�.

Thus, for any K ≥ 1, we can compute an estimate of f �

defined by

f̂(K) = Arg sup
f∈{fm}

(
sup

fd∈{fd,p}
Λ̃K(f, fd)

)
.

3.2. Choice of K

Let J(K) = 1
n

n∑
j=1

|Xj |2 − supfd∈{fd,p} Λ̃K(f̂(K), fd).

By the following Lemma, we have a way to compute easily a

convenient β and consequently K̂(β) which has already been

used in [4].

Lemma 1. There exist two sequences K1 = 1 < K2 < · · · ,
and β0 = +∞ > β1 > · · · , with

βp = max
Kp<K≤Kmax

J(K) − J(Kp)

Kp − K
=

J(Kp+1) − J(Kp)

Kp − Kp+1
, p ≥ 1

and such that ∀β ∈ (βp; βp−1], K̂(β) = Kp.

We propose to choose the number K̂(β) that maximizes

the “second derivative” of the sequence (Kp, J(Kp)), i.e Kp̂,

where p̂ maximizes lp = βp−1 − βp.

Let us explain this choice with our synthetic example.

Figure 3-a displays the sequence (K, J(K)) and Figure 3-b

displays the associated sequence (Kp, J(Kp)) obtained from

the synthetic signal (Xj). We clearly see on this Figure that

the residual variance decreases much more for 1 ≤ K ≤ 163
than for K > 163. In other words, a good trade-off between

the fit with the data and the number of harmonics is obtained
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Fig. 3. The sequence (K, J(K)), (b) the sequence

(Kp, J(Kp)) : ’*’.

with K = 163, that is, for the value of K that maximizes the

second derivative of the sequence (Kp, J(Kp)).
Finally, the estimation algorithm can be summarized as

follows:

1. for K = 1, . . . , KMax, compute J(K),

2. compute the sequences (Kp) and (βp) and define lp =
βp−1 − βp

3. let p̂ = Arg sup
p≥1

{lp}. Then, set f̂ = f̂(K̂p̂).

Table 1 displays the numbers (Kp), the estimated frequen-

cies (f̂(Kp)) and the lengths (lp) of the intervals ((βp; βp−1]).

Here, the maximization of lp yields K̂p̂ = 163 and f̂ = 30Hz

which is the true value of f �.

K̂β f̂(K̂(β)) (βp, βp−1] × 105 (βp−1 − βp) × 106

53 89.98 (3.53, 3.67] 1.39

55 89.98 (3.32, 3.53] 2.13

163 30 (1.71, 3.32] 16.1

326 15 (1.61, 1.71] 0.92

491 15 (1.59, 1.61] 0.23

495 15 (1.53, 1.59] 0.58

730 15 (1.44, 1.53] 0.97

751 15 (1.37, 1.44] 0.63

789 15 (1.31, 1.37] 0.58

798 15 (1.01, 1.31] 3.08

Table 1. The values of K̂(β) and f̂(K̂(β)) as functions of β

4. COMPARISON WITH THEORETICAL
PROPERTIES

A theoretical study driven in [5] proves that an estimator f̃n

of f� in model (1) is asymptotically efficient if it satisfies

n3/2∆(f̃n − f�) → N
(

0,
J2

J1J2 − J2
3

)
in distribution,

where J1 = 1
12(σ�)2

∫ 1

0
|s′0|2(t)dt, J2 = π2

3(σ�)2

∫ 1

0
|s0|2(t)dt,

J3 = π
6(σ�)2 i

∫ 1

0
s′0(t)s0(t)dt, the function s0 satisfying:
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s�(t) = s0(f
�t).

To compare the performances of our practical procedure

with the optimal ones, we have simulated L = 50 observed

series (Xj) satisfying (6) with

s�(t) =

3∑
k=1

a exp(2ikπf�t) + b exp(−2ikπf�t),

for f� = 3.212 Hz, fdop = 10 Hz, σ� = 1 and for each value

of (a, b) in Table 2. Then, for each of these values of (a, b),
we have computed the root mean squared error (RMSE) de-

fined by:

√
L−1

∑L
l=1(f̂l − f�)2 where (f̂l, l = 1, . . . , L)

are the L estimations of f � obtained with our algorithm. The

results are gathered in Table 2. We can remark that the values

of the RMSE’s are close to those forecast by the theoretical

approach, for n large enough.

a 0.25 0.25 0.25

b 0.15 0.2 0.25
1

n3/2∆

√
J2

J1J2−J2
3

(n = 210) 0.0257 0.0221 0.0195

RMSE (n = 210) 0.0541 0.0762 0.0569
1

n3/2∆

√
J2

J1J2−J2
3

(n = 211) 0.0182 0.0156 0.0137

RMSE (n = 211) 0.0214 0.0209 0.0465
1

n3/2∆

√
J2

J1J2−J2
3

(n = 212) 0.0129 0.0119 0.0097

RMSE (n = 212) 0.0169 0.0142 0.0147

Table 2. Comparison of the best asymptotic standard devia-

tion given by the theory with the RMSE

5. COMPARISON WITH THE MICRODOPPLER

In this section, we aim to compare the performances of our

algorithm with those of the microdoppler developed in [6] and

classically used to analyze the vibrations of an object having

a translation motion with a laser.

In the following, we shall more particularly be interested

in “long-range” vibrations analysis which means that the ob-

ject is far from the laser that is why we have to provide a

processing that can accurately estimate f � at signal to noise

ratio as low as possible. Indeed, the further away the vibrat-

ing object is, the lower the signal to noise ratio (SNR) is, the

SNR being defined for observations (Xj) satisfying (1) with

s� of the form (5) by

SNR = 10 log10

(∑M
m=1 a2

m

2σ�2

)
, (in dB).

We shall see in this section that our method gives an accu-

rate estimation of f� at smaller SNR than those required by

the microdoppler approach. For each signal s�, each value of

fdop and each value of SNR, we have simulated L = 20 ob-

served series satisfying (6) and estimated f � thanks to the two

methods proposed previously. The quality of an estimator is

quantified by computing its RMSE: Rm for the microdoppler

and Rp for our method.

SNR -30 -25 -20 -15 -10 -5

ex. 1 Rm 31.69 34 45.44 26.78 0.2 0.2

Rp 27.37 7.2 0 0 0 0

ex. 2 Rm 42.79 49.36 37.11 40.85 26.16 0.4

Rp 45.1 18.12 0 0 0 0

Table 3. Root mean squared errors for the microdoppler (Rm)

and our method (Rp), obtained with different signals and dif-

ferent SNR.

1. In this example, s�(t) = a
20∑

l=1

exp(icl cos(2πf�t))

where f� = 32.2 Hz, fdop = 225 Hz, n = 218 and cl =
4παl/λ with λ = 1.5×10−6 and αl = 55+ l, l = 1, · · · , 20.

2. The parameters remain unchanged except that f � =
83.4 Hz, fdop = 200 Hz and αl = 10 + 0.5l, l = 1, · · · , 20.

All these results let us believe that our method is promis-

ing in the laser vibrometry field.
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