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ABSTRACT

The Variational Bayes (VB) approximation is applied in the
context of Bayesian filtering, yielding a tractable on-line sche-
me for a wide range of non-stationary parametric models.
This VB-filtering scheme is used to identify a Hidden Markov
Model with an unknown non-stationary transition matrix. In
a simulation study involving soft-bit data, reliable inference
of the underlying binary sequence is achieved in tandem with
estimation of the transition probabilities. The performance
compares favourably with a proposed particle filtering ap-
proach, and at lower computational cost.

1. INTRODUCTION

Bayesian filtering is the formal framework for on-line identi-
fication of parametric non-stationary processes. The resulting
computations are tractable only for a limited class of models,
such as the Gaussian model assumption of the Kalman filter.
Particle filtering is currently the approximation of choice for
more realistic models, but the computational overheads are
often prohibitive. The Variational Bayes (VB) approximation
is an attractive deterministic alternative. In Section 2, we re-
view Bayesian filtering, and in Section 3 we develop its VB
variant, i.e. VB-filtering. The method is applied to the infer-
ence of Hidden Markov Models (HMMs) in Section 4 and its
performance is compared to particle filtering via simulations.

2. BAYESIAN FILTERING

Consider an observation process, dt ∈ Rp, t = 1, 2, ..., for
which the parametric observation model, f(dt|θt, Dt−1), is
an explicitly time-varying function. Hence, new parameters,
θt ∈ Rr(of fixed dimension, r), are required to explain new
data, dt. The parameter evolution model is expressed via
f (θt|θt−1). In Bayesian filtering, we are interested in on-line
identification of θt, ∀t, via the filtering distribution, f (θt|Dt)
[1, 2], where Dt = [Dt−1, dt] is the matrix of accumulated
data, and D0 ≡ {}. Bayes’ rule is used to update knowledge
of θt in the light of new data, dt:

f (θt|Dt) ∝ f (dt|θt, Dt−1) f (θt|Dt−1) . (1)

The parameter predictor is obtained by marginalization:

f (θt|Dt−1) =
∫

f (θt|θt−1, Dt−1) f (θt−1|Dt−1) dθt−1.

(2)
This two-step update for Bayesian on-line inference of θt

is known as Bayesian filtering [2]. Kalman filtering is a spe-
cial case, where the observation model and parameter evolu-
tion model are linear Gaussian [3].

Tractable recursive evaluation of (1) and (2), ∀t, requires
functional invariance of f (θt|Dt) under both Bayes rule (1)
and marginalization (2). This can be achieved in only a lim-
ited class of models [4]. The linear Gaussian models of Kal-
man filtering are one of the few such cases. Clearly, therefore,
approximations are necessary. Sequential Monte Carlo meth-
ods (particle filtering) [2] are currently popular, but many
other approaches have been proposed in the literature. A com-
prehensive review is available [1]. The use of the VB approx-
imation [5] in Bayesian filtering was developed in [6], and is
reviewed next.

3. VARIATIONAL BAYESIAN (VB) FILTERING

The VB-approximation imposes conditional independence be-
tween parameters of a joint distribution. In the context of
Bayesian filtering, we impose conditional independence be-
tween θt and θt−1:

f (θt, θt−1|Dt) ≈ f̃ (θt|Dt) f̃ (θt−1|Dt) . (3)

These VB-marginals are found by functional optimization:

f̃ (θt|Dt) , f̃ (θt−1|Dt) =
arg min KL (f (θt|Dt) f (θt−1|Dt) ||f (θt, θt−1|Dt)) , (4)

where KL(·) denotes Kullback-Leibler divergence [7]. The
VB-marginals have the following functional form [5]:

f̃ (θt|Dt) ∝ exp
(
Ef̃(θt−1|Dt)

[ln (f (θt, θt−1, Dt))]
)

, (5)

f̃ (θt−1|Dt) ∝ exp
(
Ef̃(θt|Dt)

[ln (f (θt, θt−1, Dt))]
)

. (6)
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(5) and (6) are typically solved iteratively, via the Iterative VB
(IVB) algorithm, where each VB-marginal is updated cycli-
cally, by substitution of the moments of the other VB-marginal.
These necessary moments are known as the VB-moments [6].

The joint distribution required in (5) and (6) is:

f (dt, θt, θt−1|Dt−1) = f (dt|θt, Dt−1) f (θt|θt−1)×
f̃ (θt−1|Dt−1) . (7)

Here, the filtering distribution at time t − 1 has already been
replaced by its VB-approximation, f̃ (θt−1|Dt−1). Substitut-
ing (7) into (5) and (6), then

f̃ (θt|Dt) ∝
f (dt|θt, Dt−1) exp

{
Ef̃(θt−1|Dt)

[ln f (θt|θt−1)]
}

, (8)

f̃ (θt−1|Dt) ∝
exp

{
Ef̃(θt|Dt)

[ln f (θt|θt−1)]
}

f̃ (θt−1|Dt−1) . (9)

(8) and (9) are known as the VB-filtering and VB-smoothing
distributions respectively. The two steps of Bayesian filtering,
(1) and (2), have therefore been replaced by the following two
parallel Bayes’ rule updates:

f̃ (θt|Dt) ∝ f (dt|θt, Dt−1) f̃ (θt|Dt−1) , (10)

f̃ (θt−1|Dt) ∝ f̃ (dt|θt−1, Dt−1) f̃ (θt−1|Dt−1) . (11)

These involve the following VB-parameter predictor and VB-
observation model respectively:

f̃ (θt|Dt−1) ∝ exp
{

Ef̃(θt−1|Dt)
[ln f (θt|θt−1)]

}
, (12)

f̃ (dt|θt−1, Dt−1) ∝ exp
{

Ef̃(θt|Dt)
[ln f (θt|θt−1)]

}
.

(13)
Each is generated by substitution of VB-moments from (10)
and (11) respectively into the parameter evolution model. Sev-
eral cycles of the IVB algorithm are typically required to achi-
eve convergence at each time, t. This communication of mo-
ments between the VB-marginals compensates for the removal
of posterior correlation between θt and θt−1 (3). Together
(10) and (11) define VB-filtering, as illustrated in Fig. 1.

Note that the same functional form for the VB-filtering
distribution, f̃ (θt|Dt), is recovered at each time step, t, since
f̃ (θt−1|Dt−1) propagates through the scheme only via sub-
stitution of the VB-moments from f̃ (θt−1|Dt) (Fig. 1). This
framework therefore greatly extends the class of models for
which tractable recursive inference is possible.

4. BAYESIAN FILTERING FOR HMMS

Consider a Hidden Markov Model (HMM) [8] on an unob-
served discrete (label) variable, lt, with c possible states. For

B

f̃(dt|θt−1, Dt−1)

f̃(θt−1|Dt−1) f̃(θt−1|Dt)

B

f(dt|θt, Dt−1)

f̃(θt|Dt−1) f̃(θt|Dt)

Fig. 1. VB-filtering, showing the flow of VB-moments (dot-
ted arrows) via IVB cycles. B denotes a Bayes’ rule update.

analytical convenience, we denote each state of lt by a c-
dimensional elementary basis vector, εc (i); i.e. lt ∈{εc (1) ,
. . . , εc (c)}. εc (i) is a length-c vector with ith element equal
to 1, zero elsewhere. Let Tt denote the c × c unknown, time-
variant transition matrix, with ijth element

ti,j,t = Pr [lt = εc (i) |lt−1 = εc (j)] .

Tt is modelled as a random walk process; i.e. the expected
value of Tt is set equal to Tt−1. Consider the special case
where this HMM is observed via a c-dimensional observation
process, dt ∈ (0, 1)c,

∑c
i=1 di,t = 1. This represents empir-

ical probabilities of each state at time t, such as normalized
counts, the output of a classifier, a soft-bit sequence, etc. The
task is then to infer lt from the observations, dt.

The following Bayesian filtering models are consistent
with the assumptions above:

f (lt|lt−1, Tt) = Mult (Ttlt−1) , (14)

f (Tt|Tt−1) = DiTt (κTt−1 + 1c,c) , (15)

f (dt|lt) = Didt (ρlt + 1c,1) . (16)

Here,Mu (·) denotes the Multinomial distribution, andDi (·)
denotes the Dirichlet distribution [6]. In (15), κ controls the
bandwidth of the process, Tt: i.e. greater values of κ favour
Tt closer to Tt−1. In (16), ρ controls the uncertainty in infer-
ring lt via dt. For large values of ρ, the observed data, dt, have
higher probability of being close to the actual labels, lt (see
Fig. 2). 1 denotes a matrix of ones, of the stated dimension.

Exact inference for (14)–(16) via Bayesian filtering is not
feasible, since the required summation (from (2)) over the c
states of lt, ∀t, leads to an exponential growth of terms in
f(lt, Tt|Dt). We overcome this problem via VB-filtering.

4.1. VB-filtering for the HMM (unknown Tt)

The log of the evolution model for θt = [lt, Tt] is

ln f (θt|θt−1) = ln f (lt, Tt|lt−1, Tt−1) =
= l′t lnTtlt−1 + tr (κ lnT ′

tTt−1) , (17)

where tr denotes the trace of the matrix, and lnTt denotes the
matrix of log-elements. VB-moments induced by this joint
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Fig. 2. The Dirichlet distribution, f (dt|lt) (16), for c = 2
and ρ = {1, 2, 10}, illustrated via its scalar conditional
distribution, f (d1,t|lt = ε2(1)) (full) and f (d1,t|lt = ε2(2))
(dashed).

evolution model are difficult to evaluate. Therefore, we ex-
tend the conditional independence assumption (3) to lt and
Tt. Under this assumption, the VB-parameter predictors and
VB-observation model have the following form:

f̃ (lt|Dt−1) ∝ exp
(
l′t ̂lnTt l̂t−1

)
,

f̃ (Tt|Dt−1) ∝ exp
(
l̂t
′
lnTt l̂t−1 + tr

(
κ lnT ′

t T̂t−1

))
,

f̃ (dt|lt−1, Tt−1) ∝ exp
(
lt−1

̂lnTt

′
l̂t + tr

(
κ ̂lnTt

′
Tt−1

))
.

The resulting VB-filtering and VB-smoothing distributions
have the following standard forms:

f̃ (lt|Dt) = Mult (αt) , f̃ (Tt|Dt) = DiTt
(Qt) ,

f̃ (lt−1|Dt) = Mult−1 (βt) , f̃ (Tt−1|Dt) = DiTt−1 (Rt) ,

with shaping parameters

αt = dρ
t ◦ exp

( ̂lnTt l̂t−1

)
, Qt = κT̂t−1 + l̂t l̂t−1

′
,

βt = l̂t
′ ̂lnTt + αt−1, Rt = κT̂t + Qt−1,

where ◦ denotes the Hadamard product. The necessary mo-
ments of the filtering distributions are l̂t = αt, T̂t = Qt ◦
1c,1

[
1′

c,1Qt

]−1
, l̂n ti,j,t = ψΓ (qi,j,t)−ψΓ

(
1′

c,1Qt1c,1

)
. ψΓ

denotes the ψ-function. Moments of the smoothing distribu-
tions are obtained in the same way.

4.2. Particle filtering (unknown Tt)

In order to evaluate the performance of this VB approxima-
tion, we now consider a simple particle filtering approach.
The following properties of the HMM model, (14) and (16),
allow simplification of the general framework: (i) the hidden
parameter, lt, has only c possible states. Hence, it is sufficient
to generate just nl = c particles, {lt}nl

; and (ii) the space of
Tt is continuous but bounded. Hence, we generate nT parti-
cles, {T}nT

, satisfying the restrictions on Tt.
We choose the following importance function:

π (Tt, lt|Dt) = DiTt

(
κT̂t−1 + 1c,c

)
Mult

(
T̂t−1 l̂t−1

)
,

where T̂t =
∑nT

j=1 wj,tT
(j), l̂t = dρ

t ◦T̂t l̂t−1. Since lt is a dis-
crete parameter, it can be marginalized analytically. Hence,
we can use the following recursive updates for the particle
weights:

wj,t ∝ wj,t−1

c∑
i=1

f (dt|lt = εc(i)) π (Tt, lt = εc(i)|Dt) .

We have not performed the resampling procedure after each
step; i.e. particles, {T}nT

, were sampled at t = 1 from the
whole support and fixed at these values, ∀t.

4.3. Simulation Study: Inference of Soft Bits

We now consider reconstruction of a binary Markov chain,
xt ∈ {0, 1}, from a soft-bit sequence yt ∈ (0, 1), where yt|xt

is realized as a Dirichlet observation process (16) with ρ = 2.
The problem is a special case of (14)—(16), with c = 2, and

dt = [yt, 1 − yt] , lt = [xt, 1 − xt] . (18)

The sequence Tt is illustrated in Fig. 4 (top). A typical result-
ing realization of the soft-bit sequence of length t = 1000 is
shown in Fig. 4 (middle), and the resulting VB-moment, T̂t,
in Fig. 4 (bottom).

We undertook a Monte Carlo study, generating 20 soft-bit
sequences, yt, each of length t = 1000. We examined the
following methods, each of which infers lt and Tt: (i) VBT:
VB-filtering as derived in Section 3; (ii) PF50: particle filter-
ing (Section 4.2), with nT = 50 particles; and (iii) PF100:
particle filtering (Section 4.2), with nT = 100 particles.

For comparison, we also examined the following tech-
niques: (iv) Threshold: xt is inferred by thresholding:

x̂t = round (yt) =

{
1 if yt > 0.5,

0 if yt ≤ 0.5;
(19)

this constitutes Maximum Likelihood (ML) estimation of xt,
ignoring the Markov chain model for xt (see Fig. 2); and
(v) inference with known Tt, for which exact Bayesian fil-
tering is tractable [6]. We expect the latter to have the best
performance. Furthermore, methods (i)–(iii) should perform
better than method (iv). If not, then inaccuracy in estimation
of the extended model has exceeded the benefits of using an
HMM. Performance was quantified via the Total Squared Er-
ror (TSE),

TSE =
t∑

t=1

(x̂t − xt)
2
,

where—in all but the threshold method (19)—x̂t = l̂1,t (18)
denotes the posterior mean of xt. In the case of the threshold
inference (19), this criterion is equal to the Hamming distance
between the true and inferred bit-streams.

The results of the Monte Carlo study are displayed in
Fig. 3. The TSE of each method is plotted as a function
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Fig. 3. Performance of HMM inference methods.

of κ. Within the illustrated range, VB-filtering performed bet-
ter than either of the examined particle filters. All performed
significantly better than the Threshold method. However, VB-
filtering performs poorly for smaller values of κ, while the
particle filters deteriorate for high κ. This sensitivity could
be overcome by inferring κ from dt on-line. Furthermore, the
choice of fixed particles, {T}nT

, limits performance of the
particle filters. More sophisticated approaches to the gener-
ation of particles—such as resampling [2], kernel smoothing
[2, Chapter 10], etc.—would probably improve performance.

5. DISCUSSION AND CONCLUSIONS

We have shown how to apply the VB approximation in or-
der to achieve tractable Bayesian filtering. In particular, we
have examined the problem of identifying HMMs with an un-
known time-variant transition matrix, Tt. This extends previ-
ous work where the unknown transition matrix, T , was time-
invariant [6]. This allows higher-order effects to be captured
in the data, notably the seasonality evident in Fig. 4 (middle).

VB-filtering is a deterministic approximation scheme based
on an assumption of conditional independence between θt and
θt−1. This restriction is compensated by iterative exchange of
moments (IVB cycles, see Fig. 1). Typically, only a few cy-
cles are needed at each time t, providing a computationally
efficient scheme for many applications where particle filter-
ing may prove prohibitive. Further improvements in accuracy
of the Variational approximation can be explored using mean
field theory [9].
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