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ABSTRACT

We consider the problem of frequency domain identification of
a convolutive multiple-input multiple-output (MIMO) system driven
by white, mutually independent unobservable inputs. In particu-
lar, we improve upon a method recently proposed in [1] that uses
PARAFAC decomposition of a tensor that is formed based on third-
order statistics of the system output. The approach of [1] utilizes
only one slice of the output tensor to recover one row of the system
response matrix. We here propose an approach that fully exploits the
information in the output tensor. As a result, the proposed method
not only achieves lower error values but also becomes applicable to
MIMO systems with possibly more inputs than outputs. By comb-
ing two output tensors, we can make the approach applicable to more
systems. We also extend the method to employ fourth-order statistics
of the system output.

keywords-PARAFAC decomposition, high-order statistics,
MIMO, blind estimation.

1. INTRODUCTION

We consider a linear time-invariant (LTI) convolutive multiple-input
multiple-output (MIMO) system driven by Ni unobservable inputs.
Our goal is to identify the system response based on the No system
outputs. MIMO models arise frequently in speech processing, multi-
access communications, multi track digital magnetic recording, and
biomedical applications.

Among the possible approaches for identification of convolutive
MIMO systems, frequency domain methods [4, 8], offer certain ad-
vantages over time domain ones; they do not require system length
information, and also, their formulation can take advantage of ex-
isting results for the scalar MIMO problem. However, extra steps
are required to resolve the frequency-dependent permutation, scal-
ing and phase ambiguities.

Higher-order statistics (HOS) based MIMO methods [4, 7, 8], as
opposed to second-order statistics based ones provide system infor-
mation without requiring channel diversity, and also can deal with
white inputs as long as they are non-Gaussian. The majority of
HOS-based blind MIMO estimation methods require prewhitening
in order to satisfy the unitary matrix requirement. However, this is a
sensitive process as it tends to lengthen the global system response
and thus increases complexity and estimation errors.

In [1], we showed how PARAFAC decomposition [2, 3, 5] of
a HOS-based tensor of the system output can be applied to the fre-
quency domain framework of [4] to avoid the need for prewhitening.
However, the method in [1] is based on an iterative scheme that, in
each iteration, uses only one slice of output tensor in order to re-
cover one row of the channel response matrix. Here we propose an
approach that fully exploits the information in the output tensor. As a

result, the proposed method not only achieves lower error values but
also becomes applicable to MIMO systems with more inputs than
outputs. We also extend the method to employ fourth-order statistics
of the system output, thus making the proposed method applicable
to a cummunications scenario.

2. PROBLEM FORMULATION

Let us consider a Ni-input No-output LTI system.

x(k) =

L−1∑
l=0

h(l)s(k − l) + n(k) (1)

where s(n) is a Ni by 1 source vector; x(n) is No by 1 observa-
tion vector; n(n) is the observation noise; h(l) is the FIR MIMO
system impulse response matrix whose (i, j) element is denoted by
{hij(n)}1≤i≤No, 1≤j≤Ni ; L is the length of the longest hij(n).

Let H(k) be an No × Ni matrix defined as the N -
point Discrete Fourier Transform of h(n), i.e., H(k) =∑L−1

n=0 h(n)e−j 2π
N

kn, k = 0, ..., N − 1 where N > L.
Our goal is to obtain an estimate of H(k) within a column per-

mutation ambiguity P, a constant diagonal scalar ambiguity Λ, and
a linear phase term ej 2π

N
kM (M is a diagonal matrix with integer

elements), i.e.:
Ĥ(k) = H(k)PΛej 2π

N
kM (2)

Notation/Definitions: Let Cn denote the n-way tensor; C de-
notes a matrix; kA denotes the k − rank of matrix A. The matrix
A of size I × J has k − rank kA = l if every l ≤ J columns of A
are linearly independent, but either l = J , or there exist a collection
of l + 1 linearly dependent columns in A.

3. PROPOSED METHODS

3.1. Third-order statistics based approach

Assumptions: (A1) Each si(.) is a zero mean, non-symmetrically
distributed, independent identically distributed (i.i.d.), stationary
process with nonzero skewness. The si’s are mutually independent.
(A2) ni(.), i = 1, ..., No are zero mean Gaussian stationary random
processes with variance σ2

n, mutually independent and independent
of the inputs. (A3) The k-rank of H(k) satisfies: 3kH ≥ 2Ni + 2
for every k.

Assumption (A1) and (A2) are common in HOS based meth-
ods that involve third-order statistics. To get a sense of (A3), if the
elements of the channel matrix are drawn independently from an ab-
solutely continuous distribution, the H(k) has both rank and k-rank
equal to min(Ni, No) with probability one [9]. For such channel,
assumption (A3) is satisfied if 3min(Ni, No) ≥ 2Ni+2. Under the
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assumption No ≥ Ni that was made in [1], (A3) is easily satisfied
as long as No ≥ 2.

The N × N discrete-frequency cross-bispectrum of the outputs
xl(k), x∗

i (k), xj(k) is the two-dimensional Discrete Fourier trans-
form of the third order cross-cumulant[10], and equals:

C3
lij(k1, k2) =

Ni∑
p=1

γ3
sp

Hlp(−k1 − k2)H
∗
ip(−k1)Hjp(k2) (3)

where k1, k2 = 0, ..., N − 1. For k1 = −m + rδ, k2 = δ, where
m, r, δ integers, C3

lij(−m + rδ, δ) can be viewed as the (l, i, j)-th
element of tensor C3(−m + rδ, δ) (No × No × No). Let us define:

Ar
�
= H(m− rδ− δ) Br

�
= H∗(m− rδ)Γ3 Cr

�
= H(δ) (4)

By fixing the index l we can rewrite (3) in matrix form as:

C3
l (−m + rδ, δ) = BrDl(Ar)C

T
r (5)

In [1] it was shown that the l − th row of Ar can be recovered from
C3

l (−m + rδ, δ) in an iterative way. Here we propose the following
approach for recovering the entire matrix Ar .

Let us slice the tensor C3(−m + rδ, δ) differently by fixing the
index i as:

C3
i (−m + rδ, δ) = CrDi(Br)A

T
r (6)

we can stack the matrices C3
i (−m+rδ, δ) for i = 1, ..., No to form

a tall matrix UA(r). It holds:

UA(r) = (Br � Cr)A
T
r , (N2

o × No) (7)

where � is the Khatri-Rao (column-wise Kronecker) Product.

Lemma 1:The Khatri-Rao product (Br �Cr) has a left inverse
for all r = 0, ..., N − 1 under (A3).

Proof : It has been proved in [9] that (Br �Cr) has full column
rank Ni once kB + kC ≥ Ni + 1. By noting that kA = kH ≤ Ni

and kA + kB + kC ≥ 2Ni + 2 (A3), we get kB + kC ≥ Ni + 1
and thus (Br � Cr) has left inverse.

We can then solve (7) for Ar as:

Ar = ((Br � Cr)
−1UA(r))T (8)

where (Br � Cr)
−1 is the left pseudo inverse of (Br � Cr).

By using the above structure, we avoid the need for the existence
of the inverse of Br that was required in [1]. As it will be seen later,
this makes the method applicable to systems with Ni > No once
(A3) is satisfied.

To find the system response we need to compute Ar for r =
0, ..N − 1, we apply PARAFAC decomposition once to the tensor
C3(−m, δ), and then use an iterative approach to find all the Ar’s.
Under assumption (A3), PARAFAC decomposition of C3(−m, δ),
yields [2]:

Â0
�
= H(m− δ)PΛ1 B̂0

�
= H∗(m)Γ3PΛ2 Ĉ0

�
= H(δ)PΛ3

(9)
where P is a permutation matrix and Λi are complex diagonal ma-
trices that satisfy: Λ2Λ1Λ3 = I. Subsequently, by noting that
Br = A∗

rΓ
3, let us define an iteration for r = 1, ..., N as:

Â(r) = ((Â∗(r − 1) � Ĉ0)
−1UA(r))T

Â(0) = Â0 (10)

It can be shown that (see Appendix I):

Â(r) = H(m − rδ − δ)PK((r))2ej(Φ1+rΦ2), r = 0, ..., N

where Φ1,Φ2 are diagonal matrices, K1,K0 are diagonal matrices
with positive elements, and ((.))2 denotes modulo 2 operation.

Let us consider N to be even and co-prime to δ. The phase
ambiguity in eq. (11) can be solved in the same manner as in [1],
which is included here for the readers’ convenience. Define:

Ĥ(m − rδ − δ)
�
= Â(r)[Â−1(N)Â(0)]r/N (11)

= H(m − rδ − δ)PK((r))2ej(Φ1+ 2π
N

kr)

where k is an integer. Applying an N/2 point IDFT on the even
samples of Ĥ(k) of (11), we get an upsampled by δ version of h,
circularly shifted by k and modulated due to the m − δ term in
(11). Once we extract the L-samples long segment (modulo N) with
the maximum energy based on its absolute value, we can cancel the
modulating factor, and compute the amount of circular shift.

The steps consisting of applying equations (9),(10) and(11) de-
fine the proposed method, which we will refer to as the Improved
Single PARAFAC decomposition (ISPD) method.

3.2. Extension to fourth-order statistics

Assumptions: In addition to (A2) we assume: (A4) Each si(.) is
a zero mean, i.i.d., stationary process with nonzero kurtosis. The
si’s are mutually independent. (A5) The k-rank of H(k) satisfies:
4kH ≥ 2Ni + 3 for every k.

Assumption (A4) requires that the fourth-order cumulants of
the inputs are not identically zero. Assumption (A4), unlike as-
sumption (A1), is satisfied by most communication signals. For a
channel matrix with independent taps, assumption (A5) is satisfied
if 4min(Ni, No) ≥ 2Ni + 3. We can see that, for No ≥ Ni, (A3)
and (A6) are satisfied as long as Ni ≥ 2.

Based on (A2) and (A4) the 4th-order discretized Trispec-
trum C4

ijlm(k1, k2, k3), defined as the three dimensional DFT of the
fourth order cross-cumulants, and equals [10]:

Ni∑
p=1

γ4
si

Hip(−k3− (k1 +k2))H
∗
jp(−k1)Hlp(k2)H

∗
mp(−k3) (12)

Let k1 = −δ, k2 = 0, k3 = −m + rδ, and C4(−δ, 0,−m + rδ)
denote the four-way tensor constructed by elements
C4

ijlm(−δ, 0,−m + rδ). Let us define:

Ar
�
= H(m − (r − 1)δ)Γ4 (13)

Br
�
= H∗(δ) (14)

Cr
�
= H(0) (15)

Dr
�
= H∗(m − rδ) (16)

For fixed i, j, let us stack the N2
o matrices (No × No)

C4
ij(−δ, 0,−m + rδ), i, j = 1..No) to form a N3

o ×No tall matrix
U4

D(r). It holds [2]:

U4
D(r) = (Ar � Br � Cr)D

T
r (17)

Lemma 2: The Khatri-Rao Product (Ar � Br � Cr) has a left
inverse for all r = 0, ..., N − 1 under (A5).
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Proof : It is easy to shown that kB + kC ≥ Ni + 1 from (A5),
thus (Br � Cr) has full column rank, also full k-rank Ni. By
noting that kA = kH ≥ 1, we get kA + k(B�C) ≥ Ni + 1, and thus
(Ar � Br � Cr) has left inverse.

Under assumption (A5), the tensor C4(−δ, 0,−m) can be de-
composed by the PARAFAC algorithm into [2]:

Â0 = A0PΛ10 B̂0 = B0PΛ20

Ĉ0 = C0PΛ30 D̂0 = D0PΛ40 (18)

where Λ10Λ20Λ30Λ40 = I.
For r = 0, 1, .., N − 1, let us define the iteration:

D̂4(r) = ((D̂4∗(r − 1) � B̂0 � Ĉ0)
−1U4

D(r))T

D̂4(0) = D̂0 (19)

Similar to the third-order case, it holds:

D̂4∗(r) = H(m − rδ)PS((r))2ej(−Φ4
1+(r+1)Φ4

2) (20)

where Φ4
1,Φ

4
2 are constant diagonal matrices, and S1,S0 are diago-

nal matrices with positive elements.
Similar to (11), equation (20) provides the even- or odd-indexed

samples of the system frequency response within a phase and con-
stant permutation and scalar ambiguities. We need to take δ, N co-
prime, and m as integer multiple of δ to facilitate solving the trivial
phase ambiguity. The phase ambiguity can be handled in exactly the
same manner as in (11).

3.3. MIMO systems with more inputs than outputs

Even if Ni > No, it is still possible to apply the proposed ISPD
method for certain Ni and No combinations as long as the relevant
assumptions are satisfied, i.e., (A3) for the 3rd order case and (A5)
for the 4th order case.

For the 3rd order case, if the channel matrix elements are
random and independent, then the k-rank of H(k) equals kH =
min{No, Ni} = No and assumption (A4) becomes:

3kH = 3No ≥ 2Ni + 2, (21)

Thus, the third-order based ISPD method can be applied to system
in which No = 4, Ni = 5, or No = 6, Ni = 8.

Similar arguments apply to the 4th order case. MIMO system
with No = 3, Ni = 4 or No = 4, Ni = 6 can be solved by the
fourth-order based ISPD method.

The main constraint to get the system estimate is the assump-
tions to guarantee the uniqueness of the initial PARAFAC decompo-
sition, i.e., (A3) for 3rd order case and (A5) for 4th order case.

Next we show for the 3rd order case how to combine two tensors
C3(−m, δ) and C3(−m+δ, δ) to construct a 2No×No×No tensor,
which can give us unique initial PARAFAC decomposition under the
more relaxed consition 2No ≥ Ni + 2 (instead of (A3)).

Along the lines of the definition of UA(r) (7), let us define
UB(r) by fixing index j and stacking the matrices corresponding
to j = 1, ..., No. Also, let us define UC(r) by fixing index l and
stacking the matrices corresponding to l = 1, ..., No.

Similar to (8), and noting that B1 = A∗
0 and C0 = C1,we can

get two N2
o × No equations for B0 and A1 as :

B0 = ((C0 � A0)
−1UB(0))T (22)

A1 = ((A∗
0 � C0)

−1UA(1))T (23)

Noting that B1 = A∗
0 and C0 = C1,we can also get two 2N2

o ×
No equations for C0 and A0 as:

C0 = (

(
A0 � B0

A1 � A∗
0

)−1 (
UC(0)
UC(1)

)
)T (24)

and

A0 = (

(
B0 � C0

C∗
0 � A1

)−1 (
UA(0)
UB(1)∗

)
)T (25)

Now we have four equations (22-25) for the four unknowns: A0,
B0, C0 and A1. we can solve them in an Alternative Least Square
(ALS) [9] manner as: every step update the four unknowns accord-
ing to the four equations, and compute the fitting of the decomposed
matrices and the tensors, stop when the convergence is slow. This
is equivalent to solving a PARAFAC decomposition problem for a
3-way tensor of dimensions 2No×No×No. As long as 2N0 ≥ Ni,
we can reduce the assumption (A3) to 2No ≥ Ni + 2.

Thus, by combining two tensors, the third-order based ISPD can
be applied to more systems with more inputs than outputs, i.e., No =
3, Ni = 4 or No = 4, Ni = 6.

The same idea can be applied to the 4th order case as well. By
combining two consecutive tensors, we can have three 2N3

o × No

updating equations for B̂0, Ĉ0 and D̂0 (which is only different with
Â∗

1 in a diagonal matrix Γ4), and two N3
o × No updating equations

for Â0 and D̂1. This is equal to solving a PARAFAC decomposition
for a 4-way tensor of dimension 2No × No × No × No. As long as
2N0 ≥ Ni, we can reduce the assumption (A5) to 3No ≥ Ni + 3,
which can be satisfied with No = 2, Ni = 3 or No = 3, Ni = 5.

3.4. Simulations

We next demonstrate the performance of the proposed approach.
We still consider the 2 × 2 bandpass MIMO channels as in [1]:

hij(n) = r1 · c(0.25(n − 10))) + r2 · c(0.25(n − 6))
+ r3 · (0.25(n− 8)) where c(n) is a sinc function with delay n and
and the ri’s are zero-mean Gaussian random variables. By varying
the ri’s we can generate multiple bandpass channels. We tested the
performance for the proposed 3rd order ISPD method for 50 2 × 2
channels of length L = 6, generated by varying the ris randomly
for each channel. We also provide comparison results between the
proposed method against the SPD method of [1], the methods of [4],
and [7]. The method of [7] is a deflation-type approach, where the
input sequences are extracted and removed one by one and then the
system is estimated based on the system output and the estimated
input.

For each channel we performed 50 Monte Carlo runs. We took
Le = 10, T = 8000, SNR = 20dB in all methods. In all methods
the output cross-cumulants were estimated using the same parame-
ters. We use N = 128, m = δ for the SPD and ISPD method, and δ
is chosen from the peak of the power-spectra.

In Fig. 1, we show the cumulative probability function for 50
random channel runs (50 MC runs each). The lower bound was gen-
erated for the same channel assuming that the input is known and
obtaining the channel estimate by cross-correlating input and out-
put. We can see the proposed ISPD has the best performance. For
example, the probability that the ONMSE is less that 0.1 is signifi-
cantly higher in ISPD.

In Table 1, we show the performance for the proposed 4th order
ISPD method for 50 2 × 2 channels of length L = 4. For each
channel we performed 30 Monte Carlo runs. We took Le = 6, T =
16000, N = 128, SNR = 20dB, m = δ, and δ is chosen from the
peak of the power-spectra. Table 1 shows the mean, variance and the
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cumulative distribution of the ONMSE for both the proposed method
and also the lower bound. The ONMSE of the 4th order ISPD is less
than 0.08 with probability higher than 0.9.

In Table. 2, we showed the performance for the proposed 3rd

order ISPD method for 50 No = 3, Ni = 4 channels of length
L = 6. For each channel we performed 50 Monte Carlo runs. We
took Le = 10, T = 8000, N = 128, SNR = 20dB, m = δ, and δ
is chosen from the peak of the power-spectra.

Table 1. ONMSE Dist. for 4th-order ISPD for 50 2 × 2 channels

ONMSE mean std 50% 90% 100%

ISPD 4th 0.0354 0.0012 0.019 0.08 0.11
lower bound 0.0016 0.4 × 10−6 0.0016 0.0018 0.002

Table 2. ONMSE Dist. for 3rd-order ISPD for 50 3 × 4 channels

ONMSE mean std 50% 90% 100%

ISPD 3rd 0.214 0.009 0.18 0.29 0.36
lower bound 0.005 0.6 × 10−6 0.005 0.0055 0.006

4. CONCLUSION

We presented a robust iterative scheme (ISPD) under the frequency
domain framework of [1] for the identification of a multiple-input
multiple-output (MIMO) system driven by white, mutually indepen-
dent unobservable inputs. The proposed ISPD method, can achieve
lower ONMSE value compare with the SPD method of [1], the meth-
ods of [4] and [7]. And the ISPD can be applied to certain systems
with more inputs than outputs. Also we extended the proposed ISPD
method to the 4th order case for communication scenario.

Appendix I

A(1) = ((A∗(0) � Ĉ0)
−1UA(1))T

= ((A∗
0P

∗
0Λ

∗
10 � C0P0Λ30)

−1UA(1))T

= ((B1(Γ3)
−1P0Λ

∗
10 � C1P0Λ30)

−1UA(1))T

= ((B1P0(Γ
3
p)−1Λ∗

10 � C1P0Λ30)
−1UA(1))T

= (((B1 � C1)P0(Γ
3
p)−1Λ∗

10Λ30)
−1UA(1))T

= ((P0(Γ
3
p)−1Λ∗

10Λ30)
−1(B1 � C1)

−1UA(1))T

= (Λ−1
30 (Λ∗

10)
−1Γ3

pP
T
0 AT

1 )T

= A1P0|Λ20|Γ3
pej(Φ10−Φ30)

Similarly, based on C3
l (−m + rδ, δ) we can get:

A(r) = H(m − rδ − δ)P0Kre
j(Φ10+r(ΦΓ3

p
−Φ30))

, (26)

where

Kr =

{ |Λ20||Γ3
p| for r odd

|Λ10| for r even
(27)
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