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ABSTRACT

Quadratic systems are the first kind of nonlinear systems in which
we are interested in order to study polynomial nonlinearities. They
can be approximated by bilinear models with nilpotent structure
that approximate certain nonlinearities and generate finite degree
Volterra series. The hereditary identification algorithm limited
until now to linear systems is extended here for identification of
nonlinear systems by implementing a canonical structure to the
approximant of degree two (quadratic). A NARX (Nonlinear
Autoregressive eXogenous input) multidimensional expression is
employed in order to perform identification by hereditary
computation.

1. INTRODUCTION

The interest on Volterra series for representing and approximating
nonlinear systems has been demonstrated [1]. For instance, we find
some applications on reducing amplifiers generated distortion
within the transmission set [2-3]. The conditions for Volterra series
realization by bilinear systems have been established in [4] and the
importance of these systems is based on the fact that they can
approximate nonlinear systems behavior with arbitrary precision
[5]. The purpose stated in this article allows limiting the Volterra
series degree; as a consequence, every kernel in the series can be
generated by a bilinear system where the associated algebra is
nilpotent under a condition on the kernels to be separable [6].

Identification of linear systems by hereditary computation has
been already established in [7]. In order to extend it to quadratic
systems, a canonical form which respects the linear dependence
from the output to the system parameters has been developed. As
an example, a scalar input/output nonlinear difference equation is
approximated by a degree two Volterra series and a comparison is
made between the hereditary and subspace identification
algorithms.

2. CANONICAL FORM

A finite degree Volterra series is expressed as:
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where the input/output are ut, yt. Without other assumptions about
the kernels Kd, this series cannot be carried out by a finite
dimensional system. However, if we force the kernels to be
separable, which means to be a sum of finite products of functions
of one variable, then the series can be accomplished by a bilinear
nilpotent system [8].

Proposition 1: Every d-degree homogenous term on series (1) with
a separable kernel can be achieved by the bilinear system:
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where knk
tx ℜ∈ , dk �1=∀ , kk nnk

tA ×ℜ∈ , dk �1=∀ ,

1−×ℜ∈ kk nnk
tD , dk �2=∀ , dn

tC ℜ∈ and 1n
tB ℜ∈ . The

dimension of k
tx gives the separability order on

1−kτ and
kτ .

Proof: Every knk
tx ℜ∈ can be considered as a linear system

output with vector input
t

k
t

k
t uxD 1− . Hence, taking as zero the

initial values of kx0
we can state:
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where ( )τφ ,tk designs the transition matrix associated to matrix
k
tA and is defined as ( ) ( )τφτφ ,1, −= tAt kk

t
.

By sequentially using the expression for dkx k
t �1, =∀ , it is

possible to show that:
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The transition matrices property allows writing the series kernel as:
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which is decomposed as a sum of function products in

dt ττ ,,, 1 � . �

It is necessary at this stage to assure a canonical
representation of the system, this means the parameter number to
be minimal avoiding unpredictability on the realization process.
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Proposition 2: The bilinear nilpotent system (2) can be written on
the canonical form:
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Proof: In the stationary case, without parameters dependence on
time, the d-dimensional z-transform of the homogenous term d

ty
can be expressed as:
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where ∈dzz �,1
C and I as the identity. Using the Cayley-

Hamilton theorem for writing the characteristic Ak matrix relation:
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If we consider the matrix dd nndP ×ℜ∈ as:
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As a result we obtain
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If we define the matrix 111 −− ×− ℜ∈ dd nndP at present as:
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with 111 −−− = ddd DPD and BPB 1~ = . Iterating in this way, we
find the given form. �

At this stage, in order to ensure the linear dependence from
the output to the system parameters, we make appear the delayed
output from every homogenous subsystem. In the quadratic case
we have:

Proposition 3: The quadratic bilinear nilpotent system output can
be obtained by a multidimensional NARX as:
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Proof: We can have the canonical form in proposition 2 for the
quadratic case as:
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Then taking matrices for d=2 and representing the linear state as a
linear output delayed:
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we obtain equation (4). �

3. HEREDITARY IDENTIFICATION

3.1. Hereditary algorithm

The parameters estimation by hereditary approach is carried out by
considering the identified system as time variant. Thus, at an
instant t the predictor in (4) is given by:
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where 1,1ˆ −tyτ and 1,2ˆ −tyτ , 1,...,1 −=∀ tτ were obtained by

minimizing the criterion :
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The development of the linear part gives us the linear dependence
already mentioned:

� ��� �
= = =

+−
+−−

+−−+−
= =

−
−

−
− +++=

2 2 11 1

1 2 1
1

2,1
2

2
,,1

1 1

1
,

,11
,

,22
,

,2 ˆˆˆˆ
n

i

n

i

n

j
i

jit
jitjii

n

i

n

i
ti

it
iti

it
iti

t uyduubuyayay ττττττττ

The parameter and regression vectors at time t are defined
respectively like:
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where indexes i,j,k,l depend from the linear and quadratic systems
dimensions. Hence, the predictor (5) can be shortly written:

1,2ˆ −= tT
t

ty ττ ϕθ (7)

The optimization criterion Jt with respect to �t gives us the
orthogonal relation:
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In fact, the regression vector depends only on the past parameters
values and not on �t giving in this way a convex minimization
problem. Replacing (7) in (8) we obtain:
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Algorithm

1. At time t-1 we have the previous data from optimized
trajectories 1...1,,ˆ,ˆ ,1,2 −=∀−− tuyy jtit ττττ .

2. At instant t the new data ut , yt let us actualize the matrix and
vector correlations in (9), respectively:
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3. We obtain the new system parameters values at time t by
inversion of the linear system:
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4. (Hereditary part). Once the parameters computed, we obtain

the new predictors trajectories ty ,1ˆτ , ty ,2ˆτ which stand on

trajectories ity −,1ˆτ and jty −,2ˆτ computed at last step by using

the system t�1=∀τ :
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5. Return at 2.

3.2. Application example: nonlinear identification

A finite dimension input/output nonlinear system can be defined:
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where ( )⋅f is a given nonlinear function.

We note that the input/output bilinear systems are a particular case
of this nonlinear system. Its equation is given by [9] :

����
= =

−−
=

−
=

− ++=
y uuy n

i

n

j
jtitij

n

j
jtj

n

i
itit uycubyay

1 001

(11)

Observe that this system is not part of the bilinear nilpotent
systems presented here, which produce a finite degree Volterra
series. Choosing the system orders in (11) as 1== uy nn , we

obtain as a particular model:
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Approximating this system by a truncated degree two Volterra
series:
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where kernel ( )11 ,τtK is approximated by a canonical linear

system in addition to kernel ( )212 ,, ττtK approximated by (5).

We have employed for identification as exciting input a
uniform white noise [10]. A white Gaussian noise has been
added to the output in order to obtain a SNR ≅ 5dB

tt
t
bruitée vyy += . We have chosen the predictor separability

orders in (5) to be equal nnn == 21
.
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The algorithm quality has been assessed in order to validate
after model identification by measuring the criterion:
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where R is the output part ty which is rightly explained by tŷ in

(12). It is called multiple correlation coefficient (squared) and is
often given in percent [11].

The particular bilinear model (12 )has been approximated
initially without additive noise in order to measure our algorithm
efficiency (see Fig. 1). By using (13) with dimension n=3, we were
able to achieve a coefficient of R=89.25%.

Comparison between hereditary and subspace algorithms is
shown in Fig. 2. The model used for subspace identification was
also bilinear nilpotent without defined structure for the system
matrices [12]. We can see from the plot that the subspace approach
fits less well the nonlinear system output mainly at high and low
peaks in comparison to the hereditary approach.

Table 1.

Nonlinear model identification

SNR
5dB

Identification and
Validation samples

R (%) Dimension
Lin+Quadr

Hereditary 50 / 50 (%) 87.15 3+3

Subspace 78.75 4+4

Table 1 shows the employed dimension and approximation result R
for both identification techniques. It is observed that the hereditary
algorithm performs better of about 10% with smaller dimension
compared to the subspace algorithm for the polynomial approach.

4. CONCLUSION
The main contributions of this work are:
- The use of the bilinear nilpotent model in order to approach a
nonlinear system by finite degree Volterra series realization.
- The canonical derivation of a structure for better conditioning of
the problem by reducing the number of parameters estimated.
- The implementation of the hereditary algorithm as a rugged tool
without employing nonlinear optimization techniques for system
identification as in other cases [13].
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