
SIMO Blind System Identification and Order Determination

Kripasagar Venkat, Issa M.S. Panahi
Department of Electrical Engineering, University of Texas at Dallas, Dallas, Texas, USA

kripasagar@student.utdallas.edu, issa.panahi@utdallas.edu

ABSTRACT

In most of the existing methods for the blind identification of
single input multiple output (SIMO) systems, such as the subspace
(SS) and Least Squares (LS), the highest order of the unknown
channels is assumed to be known or is overestimated. In this paper
we propose a new method based on the modified Levinson
algorithm which makes no such assumption. This method gives us
the exact orders of each of the unknown channels as long as at
least one FIR channel is invertible. This algorithm when compared
to the existing methods is robust, accurate and computationally
simple. This method also exhibits better performance under noisy
environments.

1. INTRODUCTION

Blind system identification (BSI) [6] addresses the problem of
estimating the channel impulse responses from the output
observations only. The unknown system could be multiple input
multiple output (MIMO), or single input multiple output (SIMO)
[7]. These problems have been studied using second (SOS) or
higher-order statistics (HOS). In HOS-based methods large data
samples are collected for reliable estimation. This was made
simpler using SOS techniques, but at the expense of priori channel
order information. Working with SOS based methods is extremely
robust under time varying environments when compared to HOS.
The SOS approach was proposed by Tong et al. Many versions of
the SOS methods have also been developed. Among such methods
are the subspace (SS) [4,5], Least squares (LS) and Linear
prediction (LP) [7] methods and their variations. The SS methods
are the most robust, but need exact or good estimate of the channel
order. For LS and LP methods, the order could be overestimated
but are very sensitive to observation noise. In all of these methods
only the highest order of the channel is known, or estimated, at the
expense of inferior performance. This also leads to the assumption
that all the channel impulse responses are of equal length, which
means overestimation of the order for some. The BSI (Blind
System Identification) for a SIMO system could be arrived at by
oversampling the observations at a sensor by a factor P, or by
having P sensors maintaining the same sampling rate. Then the
system becomes a SIMO with one source and P outputs. In this
paper we present a novel method towards solving the SIMO BSI
problem. Our method, based on the modified Levinson algorithm,
does not require any prior order information of any channel as long
as at least one channel modeled as an FIR filter is invertible. This
method gives us the exact order for each of the FIR channels from
the observations of the modified prediction error, and is robust and
less sensitive to noise when compared to the existing SS based

methods. It is also computationally inexpensive and extremely
simple to implement, and does not require the EVD of any matrix.
We start with the simple case when P=2, and then extend it for any
P. We first start with the modified Levinson algorithm (MLA)
described in [1], which characterizes an unknown system by a
stable ARMA (n, m) using both first order and second order
information. The method first described in [2] is applicable only
when the input is a white noise sequence. In our method we go
beyond such assumption and solve the problem for colored input
processes. This is achieved by first whitening the input process and
then applying the method in [2]. This problem is directly related to
the SIMO for P=2. Likewise all the channels are assumed finite
order FIR filters. This paper is organized as follows. In Section 2
we describe the problem of BSI for SIMO. In Section 3 is
discussed in detail the MLA for the colored input process. In
Section 4 is discussed the use of the MLA method to solve the BSI
for SIMO system. Section 5 discusses the simulation results and
shows the performance comparison of our method with the
conventional SS [4] and Power of R (POR) [5] methods for noisy
observations.

2. PROBLEM STATEMENT

In this section we explain the basic steps for the SIMO based BSI
and the approach for a few existing methods. As mentioned earlier
a SIMO model can be generated by oversampling or by using
multiple sensors. All methods are applicable for both types of data
observation. The setting for a single input/ multiple output is
shown in Fig. 1.

Fig. 1 SIMO model for BSI

Consider the mathematical model for any arbitrary source
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where, )(nwi is zero-mean, unit-variance, Additive white Gaussian

noise at the thi channel. iM is order of the thi channel impulse

response and P is number of sensors, number of channels, or
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oversampling factor. The blind identification is in estimating the

unknown vector h with dimension 1)1( ×+iMP which is the

vector of all channel coefficients from the observations vector y

only, and where TT
P

TT ].........,,[ 21 hhhh = with vector ih

representing coefficients of the thi channel. This problem is solved
under a few basic assumptions:
1. All of the channels are FIR, at least one of them being

invertible.
2. All the channel impulse responses are mutually co-prime, i.e.

they have no common zeros.
3. The number of observations N is greater than the maximum

order of these channel impulse responses.
4. All the channels are of equal order and are known, say M.

For our MLA based method, assumption 4 is not required. For the
existing SS and POR methods, except the invertible condition all
the other assumptions are needed.

3. ARMA MODELLING OF A LTI SYSTEM

Consider a stable, linear time-invariant system )(zH of order (N,

M), characterized by a zero-mean stationary process )(ku to get the

output )(ky .

Fig. 2 ARMA model for an LTI system

Where, )(zAN is minimum phase. Based on the available

information about the system )(zH , the input and output processes

)(ku and )(ky , we would like to approximate )(zH by the model
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The coefficients of the filters )(zQM ′ and )(zPN ′ can be obtained

by the minimization of the mean-squared error with respect to the
filter coefficients. For the case when )(ku is white noise, then the
Levinson algorithm produces stable AR models, while the Roberts
and Mullis algorithm [2] produces stable ARMA models for the
system )(zH . As far as the AR modeling is considered, the Semi-
whitening filter (SWF) [1,3] can be considered as an alternative to
the conventional whitening filter. It is the special properties of the
SWF that allows us to generalize the Robert and Mullis method for
the case when )(ku is a correlated process. In our method we first

derive the SWF �
=

−=
L

l

l
L zlfzF

0
)()( for the input

process )(ku [1,3]. Pre-filtering of the correlated signals )(ku and

)(ky by the invertible filter )(zFL will produce processes

)(ks and )(kv . Finally, minimization of the Mean-Square error

)(ˆ ke using the MLA will result in the stable )(ˆ zH as the estimate

of )(zH . The approach is depicted in Fig. 3. If )(ks is zero-mean

white process then the cross-correlation of )(ks and )(kv

represent

Fig. 3 Modified Robert and Mullis method

samples of the impulse response of )(zH and the algorithm given
in [2] can be used directly. In this case the

)1()1( +×+ nn covariance matrix
T
vsvsvnm RRRK −=),( (3)

is used in implementing the MLA. vR is

the )1()1( +×+ nn autocorrelation matrix of )(kv , and vsR is the

)1()1( +×+ mn cross-correlation matrix of )(ks and )(kv . Matrix

),( nmK is positive definite for Nn < and Mm < , and semi-

definite for Nn ≥ and Mm ≥ . The semi-definiteness of
),( nmK is checked to determine the correct orders N and M for the

estimation as n and m are incremented from the initial values of 1.
In our method, )(ks does not need to be white. It is obtained via

the SWF )(zFL ensuring only first LM ≤ˆ autocorrelation lags of

)(ks to be zero beyond the )0(sr . This property of )(ks has been

shown in [1] to be sufficient for applying MLA to obtain a

stable )(ˆ zH and to determine orders N and M correctly. The proof

is given in [1] and involves the following steps. Matrix vsR is

decomposed as CUR +=vs where the first row of the (n+1) by

(m+1) upper triangular Toeplitz matrix U is given by
)](..........)1()0([ mrrr vsvsvs −− and C is a (n+1) by (m+1) lower

triangular Toeplitz matrix with zeros on its main diagonal, and for
m=n, its last row is defined by ]0)1(..........)1()([ cncnc − ,

where njjrjc vs ≤≤= 1),()( . We then derive the matrices

T
nnm UURW −= ~

),(
~

, where }{
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Tnmnm CCWK −= ),(
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Matrix nR
~

, is symmetric, Toeplitz and positive definite. The

elements of the singular matrix TCC are in terms of the second
powers of )(krvs for nk ≤≤1 . Thus depending on both the

process )(ku and the how large the choice of M̂ is, the

approximation of TCC by a zero matrix becomes more

appropriate. If )(ku is an ARMA process, then TCC will
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quadratically approach zero making 0,)( ≥− kkrvs , a consistent

estimate of the impulse response of )(zH . Hence an

approximation of (4) by matrix ),(
~

nmW can be done by throwing

away the TCC matrix. It is shown in [1] that then the properties of
the prediction error ),( nmα , associated with the matrix ),( nmK ,
are preserved for the prediction error ),(~ nmα which is defined for

matrix ),(
~

nmW . Thus the algorithm discussed in [2] can be used

to obtain a stable estimate )(ˆ zH .

4. MLA ALGORITHM FOR SIMO BSI

In the previous section was characterization of an arbitrary ARMA
model for any colored input process. In this section we shall show
how this method can be adapted for solving the BSI problem for
SIMO systems. We also show how this method gives us the exact
order of all of the channels from the observations of the prediction
error only - the ),(~ nmα . For a single-input two-output case in Fig.

1, signals )(1 ny and )(2 ny are received/measured through the

channels )(1 zH and )(2 zH of some orders M and N respectively.

From Fig. 1, )()()( 11 zSzHzY = and )()()( 22 zSzHzY = and
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The equivalence of (5) to Fig. 3 can be done by replacing )(zBM

and )(zAN by )(1 zH and )(2 zH respectively. Now the BSI

problem becomes identical to the ARMA modeling described in
Section 3. Thus, we have to come up with the best ARMA estimate

for (5) defined by
)(

)(
)(ˆ

zP

zQ
zH

N

M

′

′= . It was shown in [1] that the

prediction error 0),(~ →′′ NMα for MM =′ and NN =′ . This

property helps us in finding the exact orders of )(1 zH and )(2 zH .

The algorithm for finding the exact solutions is described below. In
this method we identify two channels at a time. For the SIMO case,
this can be done by taking two FIR channels at each instant and
applying the above method to find which channel is invertible,
transfer functions, and correct orders of each channel.

4.1. Algorithm to solve the SIMO BSI

Step 1: Collect N observations of )(1 ny and )(2 ny . Generate the

autocorrelation matrix
2yR . Using this, solve the QFIR problem

[1,3] choosing a sufficiently large M̂ to obtain the SWF )(zFL .

Step 2: Obtain the signals )(ks and )(kv , and their autocorrelation

and cross-correlation samples by passing )(2 ny and )(1 ny

through )(zFL . Set m=1, and define upper bounds M
~

and N
~

.

Step 3: If Mm
~≤ , set n=1 and go to Step 4. Else go to Step 6.

Step 4: Derive the symmetric, Toeplitz, positive definite matrix

nR
~

, and construct ),(
~

nmW . Solve the matrix equation

�),(~),(
~

nmnm α=⋅ pW , where )](.........)1(1[ nppT =p and

]0.........01[=T
� . Record values of the ),(~ nmα . If these values

are not positive and monotonically decreasing, it means that the
transfer function )(2 zH is not minimum phase. Interchange the

positions of )(1 zH with )(2 zH and )(1 ny with )(2 ny and go to

Step 1. Else continue to Step 5.

Step 5: Set n=n+1, If Nn
~≤ go to Step 4. Else set m=m+1 and go

to Step 3.

Step 6: Looking at the values of all ),(~ nmα obtained from Step 4,

choose the minimum pair of (m, n) for which 0),(~ →nmα . This

gives the estimate of the true order MM =′ and NN =′ .

Step 7: Knowing the exact orders M ′ and N ′ derive the

symmetric, Toeplitz, positive definite matrix N ′R
~

and ),(
~

NM ′′W .

Solve the matrix equation �),(~),(
~

NMNM ′′=′′ αpW to obtain the

)1( +′N dimension vector p.

Step 8: Determine the )1( +′M dimension vector q from
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We can then directly equate )()(1 zQzH M ′= and )()(2 zPzH N ′= .

The source s(n) is easily obtained by using the invertible channel
or one of the various recovery methods.

5. SIMULATION RESULTS

In this section we show the simulations and results for our method
in comparison to SS and POR methods. The SS and POR methods
have been developed using the same assumptions used in [4] and
[5], i.e. the highest order of the channel transfer functions is
assumed to be known. We first show the behavior of the prediction
error for the MLA method which determines the exact order. If M
is the number of zeros and N the number of poles, then three cases,
M= N, M> N and M <N is chosen to show the behavior of the
prediction error. It is assumed in all the cases that the transfer
function chosen as the denominator is the minimum phase channel.
Table 1 shows the result for the true order detection for the case M
< N. A huge drop is clearly seen in the value of the prediction error
for the right combination of m and n. Hence this method gives us
the correct pair (m=3, n=5). Now that we have shown that this
method gives us the correct order, we then proceed in solving the
BSI for a SIMO. The performance of our method is compared with
the conventional SS, and POR method for SNR level of 40dB and
20dB. For the high SNR case all methods perform equally well.
For 20dB SNR it is observed that the MLA method performs the
best, and all the methods perform badly for SNRs lower than
20dB. The source was chosen to be derived from an AR model
with the transfer function:

)9.01)(9.01)(9.01(

0147016845.0
)(

18/18/1 −π−−π− −−−
=

zezez
zD

jj
.

The simulations have been carried out for the two channel
case, with one being a minimum phase system and the other being
a mixed phase system. The values of

]55.04310125.122025.215.01[)(1
−+−+−+−+−+= zzzzzzH ,
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][ 32021501301)(2
−+−−−+= z.z.z.zH .

Figures 4, 5 show the performance for an SNR of 20dB. It is
seen that all the methods perform very well and the source
recovery is close to perfect. For both the channel 1 and channel 2
estimates, the SS and POR method sit on top of each other.

Fig. 4 Estimate of )(1 zH for SNR 20dB

Fig. 5 Estimate of )(2 zH for SNR 20dB

This is because the value to which the inverse of the
autocorrelation matrix is raised is chosen to be 4. In [5] it was
claimed that for powers 3≥m , the performance of POR is same as
SS. It is seen that our method out performs the SS and POR
method. It was observed that for low SNRs the channel estimates
obtained for MLA method are much closer to the original
spectrum, and no ripples are seen in the case of phase recovery of
the source, which is not the case for the SS and POR method.

We conclude that the MLA method performs better in the
presence of low SNRs. It does not require the order information
apriori which is the most important assumption for the other two
methods to work. The SS needs two sets of EVD computation,
which becomes computationally expensive when N, the number of
observation samples, is large. Although the first EVD is not
required in the POR, it is replaced by the inverse computation and
matrix exponents. This is also computationally expensive when N
is large. The MLA method on the contrary, is computationally
inexpensive, as it does not depend on the number of observations
N. All computations for the MLA use Levinson type of recursions,
making it extremely robust. The only requirement for the MLA is
that one of the channels must be minimum phase.

6. CONCLUSIONS

In this paper we devised a new method to solve the SIMO BSI
problem. We derived the stable ARMA modeling for colored input
processes and showed its equivalence to solving the SIMO BSI
problem. We called this approach the MLA method. We showed
how this method gives us the exact order for each of the channels
which had not been addressed before in any accessible literature.
The simulation results showed the MLA to have better
performance as compared to the SS and the POR method for
noiseless and noisy observations. We also discussed the
complexity of our method to the SS and POR and concluded that
our method is certainly less complex. We used the SWF to whiten
the data. We have also observed that one could use a conventional
whitening filter of large order in place of the SWF.
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