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ABSTRACT

Algorithm ALESCAF (Alternating LEast Squares identifica-
tion based on the ChAracteristic Function) uses the deriva-
tives of the second characteristic function (c.f.) of observa-
tions, without any need of sparsity assumption on sources,
but assuming their statistical independence. ALESCAF was
already proposed by the authors in [1], where only one deriva-
tive order was considered. In this paper, new versions of
ALESCAF are proposed, that jointly use derivatives of differ-
ent orders. We also propose ALESCAS, a new algorithm that
uses the knowledge of source c.f.’s. Computer simulations
demonstrate that both algorithms accelerate the convergence.

1. INTRODUCTION

Under-Determined Mixtures (UDM) refer to linear mixtures
of independent random sources, where the number of sources,
N , exceeds the number of sensors, P . Blind Channel Identi-
fication (BCI) of UDM’s has been dealt with in [2] [3] [4] [5],
where only data Fourth Order statistics were used.

The c.f. has been already utilized in [6] to blindly separate
sources under the assumption that there are at most as many
sources as sensors (i.e. over-determined mixtures). In this
paper, we use the c.f. to identify linear mixtures where the
number of sources exceeds the number of sensors (i.e. UDM).

The second c.f. was used in [7] for UDMs, but computer
experiments were disappointing. In [1], we proposed an al-
gebraic solution ALGECAF (ALGEbraic identification based
on the ChAracteristic Function), proven to be very attractive
for BCI of 2 × N mixtures. However, ALGECAF turns out
to be complicated to implement for P > 2. Hence, the im-
portance of ALESCAF (Alternating LEast Squares identifi-
cation based on the ChAracteristic Function), which reduced
the BCI problem to a tensor decomposition, and accelerated
the convergence [8].

Faster convergence can be obtained by exploiting the pos-
sible knowledge of source c.f.’s through algorithm ALESCAS
[9] (Alternating LEast Squares identification based on the
ChAracteristic function with known Source pdf’s), and/or by
using jointly derivatives of different orders, as subsequently
shown. Some recent works dealt with BCI of UDM using
tensor decomposition, see [10] and references therein. The
number of sources is limited in [10], whereas the algorithms
proposed here do not impose any bound on the number of
sources, at least in theory. Practically, the complexity of the
solution increases as the number of sources increases.

2. ASSUMPTIONS AND NOTATION

We assume the observation model below:

x = A s + w (1)

where array variables are distinguished from scalars by bold
faces, x and s are random vectors of size P and N respec-
tively with 1 < P < N , A is a P ×N full rank matrix, and w

accounts for modeling errors and additive noise of unknown
distribution. From now on, its presence is just ignored in the
remaining, except when running computer experiments. The
entries sn of vector s are assumed to be non Gaussian and
statistically independent.

For simplicity, we shall restrict our attention in this pa-
per to real variables and mixture, but most of the reasoning
applies to the complex case, up to some complication in the
notation. We also assume the following hypotheses:

H1 the columns of A are pairwise linearly independent
H2 source distributions are unknown and non Gaussian
H3 the number N of sources is known
H4 the moments of the sources are unknown, but finite up

to some order larger than N

Under H1, H2, and H3, A can be shown to be essentially
unique [11]. In algorithm ALESCAS, H2 is replaced by:

H2s source distributions are known and non Gaussian.
The algorithms proposed are based on the core functional
equation below, which is a direct consequence of source in-
dependence

Ψx(u) =
N∑

n=1

ψn(
P∑

p=1

Apnup) (2)

where Ψx(u) denotes the second c.f. of x defined as
Ψx(u) = log E{exp(juT

x)}, and where ψn(v) denotes the
second c.f. of source sn: ψn(v) = log E{exp(jvsn)}, the
dotless j being the square root of -1. This core equation can
be used in an open neighborhood Ω of the origin, where Ψx

does not vanish.

3. UNKNOWN SOURCE DISTRIBUTIONS:
ALESCAF

In this section, we assume the hypothesis:

H4a the source second characteristic functions ψn admit un-
known finite derivatives up to order 3, at every point of
some grid G of K values {u[1], ...,u[k]} ∈ Ω
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3.1. One Order Derivatives

For notation simplicity, suppose that P ≥ 3, the case with 2
sensors will be discussed in 3.3. And take the second order
derivatives of (2)

∂2Ψx(u)

∂ui∂uj

=
N∑

n=1

AinAjn ψ(2)
n (

∑
q

Aqnuq) (3)

with 1 ≤ i, j ≤ P . Take this equation on K points
u[k] ∈ G ⊂ Ω. Then, storing the left hand side of (3) in
a family of symmetric matrices Tij [k], and denoting Dkn =

ψ
(2)
n (

∑
q Aqnuq[k]), (3) can be arranged in compact form as:

T [k] = A Diag{D(k, :)}A
T, (4)

with 1 ≤ k ≤ K , where Diag{v} denotes the diagonal ma-
trix whose entries are those of vector v, and where D(k, :)
denotes the kth row of D. Expression (4) can be alternatively
written as:

Tijk =
N∑

n=1

AinAjnDkn (5)

where T is a P ×P ×K tensor. (4) and (5) equivalently rep-
resent a 3-way PARAFAC model, and can be efficiently solved
by using the ELS algorithm described in [8].

This procedure constitutes algorithm ALESCAF(2), and
is able to compute A and D from tensor T , where the implicit
dependence of D on A is ignored.

3.2. Multiple Order Derivatives

The previous algorithm only uses one (the second) order
derivatives of the second c.f. of the observations to build ten-
sor T , and proved to have some limitations in terms of iden-
tifiability and convergence speed. It can be made faster by
adding extraneous terms to tensor T , that correspond to other
order derivatives of (2). In fact, take the P further derivatives
of (3):

∂3Ψx(u)

∂ui∂uj∂up

=

N∑
n=1

AinAjnApn ψ(3)
n (

∑
q

Aqnuq) (6)

with 1 ≤ p ≤ P . Denote by T [2] the P × P × K tensor
previously defined in (5), where the number 2 stands for the
order of the derivatives used. Again, take equation (6) on K
points u[k] ∈ G ⊂ Ω. Note that the latter K points can be
different from those of section (3.1). For simplicity, we keep
the same K points u[k].

Then, (6) leads to P new P × P × K tensors T [3, p]:

T [3, p]::k = A Diag{D̃p(k, :)}A
T

where (D̃p)kn = Apnψ
(3)
n (

∑
q Aqnuq[k]). By putting T [2]

and the P tensors T [3, p] next to each other in the third mode,
we obtain a bigger tensor of size P × P × (P + 1)K . This
rearrangement is shown in figure 1. This constitutes algo-
rithm ALESCAF(2,3), that simultaneously uses the second
and third order derivatives of the second c.f. of the observa-
tions, and accelerates the convergence as will be shown in the
simulation section.

P

. . .

P

P
(P+1)K

P

T [2]::K

T [2]::2
T [2]::1

T [3, 1]
T [2]

T [3, P ]

Fig. 1: Building new P ×P × (P + 1)K tensor from tensors
T [2] and T [3, p], 1 ≤ p ≤ P .

3.3. Example 1

As mentioned in 3.1, let’s take a more concrete example and
suppose that P = 2, N = 3. In this case, we need to take the
third order derivatives of the second c.f. of the observations,
as the second order derivatives yield a 3-way PARAFAC model
that does not achieve Kruskal uniqueness condition [12]:

2 rk(A) + rk(D̃) ≥ 2 rank{T [2]} + 2 (7)

Then, we obtain a 4-way PARAFAC model defined by:

Tijpk =
N∑

n=1

AinAjnApnDkn

where T is a P × P × P × K tensor and Dkn =

ψ
(3)
n (

∑
q Aqnuq[k]). Now, uniqueness is achieved as (7) is

verified: 3P + N = 9 ≥ 2N + 3 = 9.
We cannot use ALESCAF(2,3) because rk(D̃) cannot be

at least as large as 5. But ALESCAF(3) generically works.
But we can use ALESCAF(3,4). Then, entries of the new
P × P × P × (P + 1)K tensor T are defined as, with 1 ≤
p ≤ P :

T::pk =

⎛
⎜⎝

∂3Ψx(u[k])
∂u2

1
∂up

∂3Ψx(u[k])
∂u1∂u2∂up

∂3Ψx(u[k])
∂u1∂u2∂up

∂3Ψx(u[k])
∂u2

2
∂up

⎞
⎟⎠ , 1 ≤ k ≤ K

T::pk =

⎛
⎜⎝

∂4Ψx(u[k])
∂u3

1
∂up

∂4Ψx(u[k])
∂u2

1
∂u2∂up

∂4Ψx(u[k])
∂u2

1
∂u2∂up

∂4Ψx(u[k])
∂u1∂u2

2
∂up

⎞
⎟⎠ , K + 1 ≤ k ≤ 2K

T::pk =

⎛
⎜⎝

∂4Ψx(u[k])
∂u2

1
∂u2∂up

∂4Ψx(u[k])
∂u1∂u2

2
∂up

∂4Ψx(u[k])
∂u1∂u2

2
∂up

∂4Ψx(u[k])
∂u3

2
∂up

⎞
⎟⎠ , 2K + 1 ≤ k ≤ 3K

4. KNOWN SOURCE DISTRIBUTIONS: ALESCAS

In this section, we exploit the knowledge of the source dis-
tributions in order to accelerate the convergence. We assume
the hypothesis:

H4b the source second characteristic functions admit finite
derivatives up to order 8 at the origin

When source distributions are known, or are unknown but
known to be equal, it is convenient to assure that G = {0},
that is, to use a single point in the grid (K = 1). In fact, the
argument of ψn in (2) then becomes independent of A.
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4.1. Equal source distributions: ALESCASE

We first consider that the N sources have the same (possi-
bly unknown) distribution. The fourth order derivatives of (2)
taken at the origin give:

∂4Ψx(0)

∂ui∂uj∂up∂uq

= ψ(4)(0)

N∑
n=1

AinAjn[ApnAqn] (8)

with 1 ≤ i, j, p, q ≤ P . (8) can be written as a 3-way tensor:

Tijk =

N∑
n=1

AinAjnD̃kn (9)

where
D̃ = ψ(4)(0)A�2 (10)

and A
�q is the column-wise non redundant symmetric Kro-

necker product of A with itself q times. If A is of size 2×N
for instance, then A

�q is of size q + 1 × N .
Now, in the ELS algorithm, the dependence of D̃ on A

is exploited. In fact, at each iteration, D̃ is not updated, as
it is the case for ALESCAF, but computed from expression
(10). This makes the convergence faster and the solution more
stable, as will be seen in the simulation section.

Note that we do not need to know the source distributions,
but we just need to know that those distributions are equal. In
fact, ψ(4)(0) of expression (10) is a scale factor, and can be
absorbed in A

�2. Then, D̃ is updated by: D̃ = A
�2.

4.2. Unequal source distributions: ALESCASU

When the source distributions are different, D̃ cannot be com-
puted anymore from expression (10). It is even worse, due to
the permutation ambiguity:

D̃ = A
�2

P Diag{[ψ
(4)
1 (0), ..., ψ

(4)
N (0)]}P

T

where P is a N × N permutation matrix. This ambiguity
needs to be fixed, which leads to algorithm ALESCASU. As
the symmetry constraint is relaxed in the ELS algorithm, min-
imizing the gap between both sides of (9) consists of minimiz-
ing:

Υ =
∑
ijk

‖Tijk −

N∑
n=1

AinBjnD̃kn‖
2

After some (5 for example) ELS iterations on tensor T ,
ALESCASU consists of performing the following steps, at
each iteration:

1. Estimate Â in the Least Squares (LS) sense from pre-
vious values of B̂ and D̃, then normalize its columns

Â1 = Â Diag{[
1

‖â1‖
, ...,

1

‖âN‖
]}

where ‖âi‖ is the norm of the ith column of Â

2. Estimate D̂, in the LS sense, from Â1, and previous
values of B̂

3. Fix the permutation ambiguity by minimizing:

ε = ‖D̂1 − D̃1‖
2
F

where: D̂1 = D̂ Diag{[ 1

‖
ˆ
d1‖

, ..., 1

‖
ˆ
dN‖

]}

D̃ = Â
�2

1 P (DΛ)P
T

D = Diag{[ψ
(4)
1 (0), ..., ψ

(4)
N (0)]}

Λ = Diag{[‖â1‖, ..., ‖âN‖]}

Practically, in order to fix P , we try all possible permu-
tations and keep the one that minimizes ε

4. Estimate B̂ in the LS sense
5. Use Â1, B̂, and D̃ as initial values for the next iteration

ALESCASU reiterates and performs the same previous
steps until the convergence criterion is met.

4.3. Example 2

Under conditions of example 1, and in the case of BPSK sour-
ces, we need to take the sixth order derivatives for ALESCAS.
We then obtain a 2 × 2 × 2 × 4 tensor T :

T::pk =

⎛
⎜⎜⎝

∂6Ψx(0)

∂u
6−k
1

∂u
k−1

2
∂up

∂6Ψx(0)

∂u
5−k
1

∂uk
2
∂up

∂6Ψx(0)

∂u
5−k
1

∂uk
2
∂up

∂6Ψx(0)

∂u
4−k
1

∂u
k+1

2
∂up

⎞
⎟⎟⎠

with 1 ≤ p ≤ P , and 1 ≤ k ≤ 4.
As mentioned in the introduction, the number of sources

N is theoretically unbounded. However, as N increases, the
complexity of both ALESCAF and ALESCAS increases be-
cause the order of the derivatives and the tensor order need
to be increased. In fact, if we keep P = 2 and increase N
by one (N=4), uniqueness is no longer achieved (7). One so-
lution is to use the 8th order derivatives of (2) and build the
corresponding 5-way tensor of size 2 × 2 × 2 × 2 × 5:

T::lpk =

⎛
⎜⎜⎝

∂8Ψx(0)

∂u
7−k
1

∂u
k−1

2
∂ul∂up

∂8Ψx(0)

∂u
6−k
1

∂uk
2
∂ul∂up

∂8Ψx(0)

∂u
6−k
1

∂uk
2
∂ul∂up

∂8Ψx(0)

∂u
5−k
1

∂u
k+1

2
∂ul∂up

⎞
⎟⎟⎠

5. COMPUTER RESULTS

We consider the linear model of expression (1), with P = 2
and N = 3. Sources are BPSK, that is, they take their values
in {−1, 1} with equal probabilities. The channel matrix A is

A =

(
1 cos(θ) 0
0 sin(θ) 1

)

Firstly, the influence of the joint use of several order deriva-
tives of the second c.f. of the observations is analyzed. For
this purpose, we compare the performances of ALESCAF(3),
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Fig. 2: Gap between original and estimated channel matrix
using ALESCAF(3), ALESCAF(3,4), and ALESCAF(3,4,5)
for (P, N) = (2, 3), BPSK sources, infinite block, θ = π/6.
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Fig. 3: Gap between original and estimated channel matrix
using ALESCAF(6) and ALESCASE for (P, N) = (2, 3),
BPSK sources, infinite block, θ = π/6.

ALESCAF(3,4), and ALESCAF(3,4,5), in figure 2. An ”infi-
nite block” of data is implicitly assumed by taking all the 23

possible combinations of {−1, 1}.
Secondly, we analyze the influence of the knowledge of

the source distributions. In figure 3, we use ALESCASE
where the 3 sources are BPSK. And in figure 4, we use
ALESCASU where 2 sources are BPSK, and one source is
4PAM, that is, it takes its values in {−3,−1, 1, 3} with equal
probabilities.

6. CONCLUSION

We proposed new versions of algorithm ALESCAF, that si-
multaneously use derivatives of different orders of the second
c.f. of the observations, and demonstrated that they accel-
erated the convergence. We also proposed two variants of
ALESCAS, that exploit the knowledge of the source distribu-
tions: (i) ALESCASE supposes that the sources have equal
distributions, and does not need the explicit value of the dis-
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Fig. 4: The error Υ using ALESCAF(6) and ALESCASU for
(P, N) = (2, 3), 2 BPSK and one 4PAM sources, infinite
block, θ = π/6.

tribution ; (ii) ALESCASU allows to have sources with un-
equal distributions. We demonstrated that the convergence is
accelerated in both cases.
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