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ABSTRACT

The LMS algorithm suffers from its slow rate of convergence, espe-
cially for high correlated input signal. The input pre-whitening based
algorithms provide better convergence rate with the price of noise
enhancement. To mitigate this drawback, we present in this paper a
technique, which consists on exciting the adaptive filter at both the
input signal direction and the pre-whitened input direction. Hence,
two different step sizes are used, they permit to improve convergence
rate without enhancing the noise during steady state. A theoretical
analysis of the steady state performance is presented. Simulation re-
sults are also presented to support the analysis and to compare the
proposed algorithm with classical ones.

1. INTRODUCTION

Several adaptation algorithms are developed in order to identify un-
known systems. The Least Mean Square (LMS) algorithm is the
commonly used one [1]. Although its computational requirements
are low, it suffers from slow rate of convergence, especially for col-
ored input signals. To overcome this drawback, several approaches
based on input decorrelating were proposed [1][2]. The main idea
is to pre-whiten or decorrelate the excitation before passing it to the
adaptive algorithm. This is possible by using decorrelation filters
whose outputs are predictor errors. Various possibilities of placing
decorrelation filters within the identification system are possible (see
for example [3] for global overview on main solutions in acoustic
echo cancellation field).

In this paper, the proposed solution is based on algorithm adap-
tation which operates at two decorrelated directions: the direction of
the pre-whitened input signal, in order to fasten convergence and the
direction of the input signal, in order to reduce noise enhancement
generated by output filtering. Furthermore, the adaptation process
is applied one time each two iterations. It leads to unwanted bursts
reduction, appearing commonly in classical approaches using pre-
whitening techniques.

The paper is organized as follows. In section 2, we present some
backgrounds on classical techniques using input decorrelation ap-
proach. We will focus the study on their advantages and limita-
tions. In section 3, we firstly develop the main idea characterizing
the proposed algorithm. Next, we present the Double Direction Pre-
whitened LMS algorithm (DDP-LMS). In section 4, we present a
mathematical formulation for the steady state analysis. Section 5 is
devoted to a comparison between the proposed algorithm and clas-
sical ones such as the LMS and two variants of the filtered-XLMS
algoritms. Finally, some concluding remarks are provided.

2. BACKGROUNDS ON FILTERED X-LMS ALGORITHMS

2.1. Filtered X-LMS algorithms

In this paper, we consider the identification problem of a linear sys-
tem characterized by the following input/output relationship:

y(k) = F T X(k) + n(k), (1)

where F is the system impulse response of length L,
X(k) = [x(k), · · · , x(k−L +1)]T is the observation vector of the
input signal, and n(k) is an additive white Gaussian noise.

The adaptive filter H(k) is used to identify the system impulse
response F . It is well known that the best convergence rate of an
adaptive filter is obtained when it is excited by a quasi-white in-
put signal. Hence, diferent algorithms use a predictor, P (k) =

[p1(k), p2(k), .., PN (k)]T , of length N to decorrelate the input. The
output of the pre-whitener is given by:

xf (k) = x(k) −
N∑

i=1

pi(k)x(k − i). (2)

In this section, we are interested by the algorithms resumed in Table
1.

Table 1. Algorithm descriptions.
Notation Adaptation expression

LMS H(k + 1) = H(k) + µe(k)X(k)

PI-XLMS H(k + 1) = H(k) + µe(k)Xf (k)

PIFE-XLMS H(k + 1) = H(k) + µef (k)Xf (k)

The PI − XLMS (Pre-whitened Input XLMS) algorithm is the
most popular one, due to its robustness and simplicity of implemen-
tation [1]. It is proposed in order to achieve better convergence rate
than the LMS. Another approach, where the adaptive filter is driven
by both the pre-whitened input and the filtered error is called Pre-
whitened Input/Filtered Error XLMS algorithm (PIFE-XLMS) [4].
The filtered error is obtained using the same pre-whitening filter:

ef (k) = e(k) −
N∑

i=1

pi(k)e(k − i). (3)

2.2. Performances

The deviation vector is the common tool to evaluate adaptive algo-
rithm behavior [1][2]. It is defined as the difference between the
adaptive filter and the unknown one:

V (k) = H(k) − F. (4)
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In case of LMS algorithm, it is well known that its convergence
rate depends on the eigenvalue spread of the input correlation ma-
trix Rx = E

{
X(k)X(k)T

}
. Faster convergence is obtained for

white inputs [1][2].
In order to improve the convergence rate, PI-XLMS was intro-

duced. It is also well known that its convergence rate depends on
matrix R′

x = E
{
Xf (k)X(k)T

}
[1]. It is a lowercase triangu-

lar matrix whose eigenvalues are identical, leading to an accelerated
convergence rate when compared to that of LMS.

An alternative solution to accelerate the convergence rate is to
use PIFE-XLMS. Its deviation vector obeys the following recursion

VPIFE(k + 1) =
[
I − µXf (k)Xf (k)T

]
VPIFE(k)

+µnf (k)Xf (k) − µ2∆(k),
(5)

where µ2∆(k) is given by:

µ2∆(k) = µ

N∑
i=1

pi [H(k) − H(k − i)]T X(k − i)Xf (k). (6)

This recursion permits the following interpretations:
• For small step sizes, the term on µ2∆(k) can be neglected. We
obtain the same performances as the LMS algorithm excited with
a quasi-white input xf (k) and whose additive noise is nf (k). The
convergence rate is then the best one.
• During steady state, we notice additive noise amplification. In
fact, the filtered noise power is greater than additive noise power

(Pnf = Pn

N∑
i=1

p2
i > Pn. Such noise amplification constitutes the

main drawback of the PIFE-XLMS algorithm.
• For large step sizes, the term on µ2∆(k) has an effect on algorithm
performances. It depends on past errors which render the algorithm
sensitive for error variations. In fact, in case of important errors vari-
ations, local bursts can appear, degrading locally the performances.

2.3. Illustration

To illustrate the last interpretation, we carry the following simula-
tion. We consider an input signal of power Px = 10 modeled by
AR(1) model x(k) = ρx(k−1)+g(k), where g(k) is a white noise
and ρ = 0.95. The system to be identified is characterized by an
impulse response F = [1; 0; 10; −6; −1; 4; 0.1; 5; −2; −0.1]T

(L = 10), and an additive noise of power Pn = 0.1. The tested
algorithms are the PI-XLMS, the PIFE-XLMS, and the LMS ex-
cited with white input of power Pxf =

(
1 − ρ2

)
Px. Two differ-

ent additive noises are considered. The first one is AWGN n(k) of
power Pn. The second one is nf (k) = n(k) − ρn(k − 1) of power
Pnf =

(
1 + ρ2

)
.

Fig. 1 illustrates the evolution of the Mean Square Deviation

MSD(k)
�
=E

{
V (k)T V (k)

}
versus iteration number for µ = 0.005.

It can be observed that PIFE-XLMS has the same transient state as
LMS with white input and it has better convergence rate than PI-
XLMS. During steady state, we notice degradation. In fact, some
local bursts are observed and the error power is close to that of LMS
with additive noise nf (k).

3. DOUBLE DIRECTION PREWHITED LMS ALGORITHM

3.1. Motivations and preliminary solutions

Our purpose is to propose a solution to improve PIFE-XLMS by tak-
ing advantage of convergence improvement with an adequate correc-
tion to mitigate the noise enhancement and the algorithm sensitivity
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Fig. 1. Illustration of PIFE-XLMS negative aspects for large step
size.

to errors. For such purpose, we propose to cancel the term µ2∆ on
5. It is possible by setting H(k) = H(k − i) ∀ i = 1..N . This
operation is equivalent to adaptation stop during N iterations. More
precisely, adaptation is carried at iterations whose index is multiple
of N + 1 and stopped otherwise.

Furthermore, we propose to limit adaptation stop to one iteration
over two, and use a first order predictor. It is justified by two critical
points [5]:
• During transient state, the convergence time is N times the one of
white input. The larger the N , the slower the convergence rate.
• During steady state, the level of error is amplified. The improve-
ment in term of convergence rate will be counterbalanced by error
amplification.

3.2. Adaptation at two directions

The proposed idea to avoid error amplification in illustrated in Fig.
2 and is described as follows:

Fig. 2. Illustration

• The transient behavior of an adaptive can be analyzed through the
evolution of the error signal e(k), which can be expressed by:

e(k) = −V (k)T X(k) + n(k). (7)

When (V (k)T X(k) ≈ 0), the error is minimized, this means that
the deviation vector is orthogonal to the input observation vector,
and we have excited the algorithm H(k) in the direction of X(k).

• For high correlated inputs characterized by |X(k+1)T X(k)|
‖X(k + 1‖ ‖X(k)‖

close to 1, and by using an optimal predictor (leading to white xf (k)
signal), the observation vector of the pre-whitened input is orthogo-
nal to X(k) and quasi-orthogonal to X(k + 1).
• Using PIFE approach, we adapt at Xf (k) direction which permits
to attenuate the deviation vector (‖V (k+1)‖ ≤ ‖V (k)‖). However,
according to Fig. 2, we observe that the projection of V (k + 1) on
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X(k + 1), V (k + 1)T X(k + 1), didn’t decrease so much.
By exploiting the property of e(k) in (7), we can deduce that by up-
dating the algorithm in the X(k)’s direction, we will get V (k)T X(k)
close to zero. Hence we reduce the amplitude of the error signal and
we improve the convergence rate of the algorithm.

3.3. Double Direction Pre-whitened LMS algorithm

The main idea of the proposed algorithm is to excite the algorithm
on two directions: the direction of the pre-whitened signal Xf (k),
in order to fasten the convergence of the algorithm, and the direc-
tion the input signal X(k) in order to reduce the mean square error
during the transient phase. The proposed algorithm expressions are
re-formulated as follows:⎧⎨
⎩

H(2k + 1) = H(2k)
H(2k + 2) = H(2k) + µfef (2k + 1)Xf (2k + 1)

+µxe(2k)X(2k).
(8)

4. STEADY STATE ANALYSIS

4.1. General formulation

The behavior of the proposed DDP-LMS is described by the devia-
tion vector recursion

V (2k + 2) = [I − µfMf (2k + 1) − µxMx(2k)] V (2k),
+µfXf (2k + 1)nf (2k + 1) + µxX(2k)n(2k),

(9)
where Mx(2k) = X(2k)X(2k)T and Mf (2k+1) = Xf (2k+

1)Xf (2k+1)T . The mean square behavior is described through the
evolution of the auto-correlation of the deviation vector defined by

RV (k)
�
=E

{
V (k)V (k)T

}
. (10)

Using equation (9), and the well known independence assump-
tion, it is easy to show that RV (k) satisfies the following recursion:

RV (2k + 2) = RV (2k) + µ2
xΓx,x + +µ2

fΓf,f + µxµfΓx,f

−µf [E {Mf (2k + 1)}RV (2k) + RV (2k)E {Mf (2k + 1)}]
−µx [E {Mx(2k)}RV (2k) + RV (2k)E {Mx(2k)}]
+µ2

fPnf E {Mf (2k + 1)} + µ2
xPnE {Mx(2k)}

+µfµxE
{
n(2k)nf (2k + 1)

}×[
E

{
Xf (2k + 1)X(2k)T

}
+ E

{
X(2k)Xf (2k + 1)T

}]
,
(11)

where⎧⎪⎨
⎪⎩

Γx,x = E {Mx(2k)RV (2k)Mx(2k)}
Γf,f = E {Mf (2k + 1)RV (2k)Mf (2k + 1)}
Γf,x = E {Mx(2k)RV (2k)Mf (2k + 1)}

+E {Mxf (2k + 1)RV (2k)Mx(2k)} .

(12)

In theoretical point of view, (11) permits to analyze all mean square
performances in both transient and steady state. However, in practi-
cal point of view, (11) is hard to solve due to its complicate structure.
In order to overcome these difficulties, we used tensorial algebra
properties [5]. The obtained expressions permits exact performances
analysis. However, they are presented in compact form which ren-
ders their interpretation difficult. In this paper, we propose to ap-
proximate the steady state performance for small step sizes. This
approach will proove in concrete equations the importance of adap-
tation at two directions and other properties, reinforcing the validity
of the proposed algorithm.

4.2. Small step sizes analysis

Without loss of generality, we consider the special case of AR(1)
input signal with correlation coefficient ρ . We assume that the opti-
mal predictor p(k) = ρ is used. In this case, xf (k) is white of power
Pxf = (1−ρ2)Px and the filtered noise power is Pnf = (1+ρ2)Pn.

We focus our analysis on small step sizes. In such case, the
terms µ2

xΓx,x, µ2
fΓf,f and µxµfΓx,f in (11) are neglected. Under

the convergence conditions (RV (2k + 2) = RV (2k) for k → ∞),
we can show easily that the auto-correlation matrix RV satisfies:

µx [RV Rx + RxRV ] + 2µfPxf RV =

µ2
fPnf Pxf I + µ2

xPnRx − µxµfPn
Pxf

Px
(Rx − PxI)

(13)

In order to solve (13), we denote Λ, a diagonal matrix whose el-
ements λi are the eigenvalues of the input auto-correlation matrix
Rx = QΛQ−1. By the same way, we denote RV = QΦQ−1.
Equation (13) can be rewritten as follows:

µx(ΦΛ + ΛΦ) + 2µfPxf Φ =

µ2
fPnf Pxf I + µ2

xPnΛ − µxµfPn
Pxf

Px
(Λ − PxI)

(14)

The first step consists on calculating the diagonal elements of
the matrix Φ. Next, the excess mean square error (EMSE) approx-
imated by:

EMSE ≈ trace(RxRv), (15)

can be calculated by taking the trace of (14). It is given by:

EMSE(νx, νf ) =
Pnνx

2
+

Pnνf

2

1 + ρ2

1 − ρ2

−Pn
νxνf

1−ρ2

{
1
L

∑L
i=1

c2i
νf +ciνx

} . (16)

Where νx = µxLPx, νf = µfLPxf and ci =
λi

Px
are the normal-

ized eigenvalues.
Two special cases can be derived. The first one (resp. sec-

ond one) is obtained by adaptation at pre-whitened input direction
(resp. input direction). It corresponds to the performance of the
PIFE-XLMS (resp. LMS) algorithm.

EMSE(0, νf ) =
Pnνf

2
1+ρ2

1−ρ2

EMSE(νx, 0) =
Pnνx

2
.

(17)

4.3. Bounding EMSE

In order to point out the importance of exciting the algorithm in
the direction of the input signal, we propose to determine an upper
bound of the EMSE. For such purpose, we consider the properties

of the function h(ci) =
c2
i

νf + ciνx
. Since νf and νx are positives,

the function h(.) is convex in [0, +∞[

L∑
i=1

1

L
h(ci) ≥ h

(
L∑

i=1

1

L
ci

)
, (18)

Since ci =
λi

Px
, it is easy to show that:

∑L
i=1

1
L

ci = 1. Hence, the

lower bound is given by:

h

(
L∑

i=1

1

L
ci

)
=

1

νf + νx
. (19)
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The EMSE can be bounded as follows:

EMSE(νx, νf ) ≤ BEMSE(νx, νf )

BEMSE(νx, νf ) =
Pnνf

2

1 + ρ2

1 − ρ2

− Pnνx
2(1−ρ2)

{
(1 + ρ2)νf − (1 − ρ2)νx

νf + νx

}
(20)

From (20), we can show that it exists an optimal step size νopt
x ,

which minimizes the upper bound BEMSE(νx, νf ). It is given by

νopt
x =

(
−1 +

√
2

1 − ρ2

)
νf . (21)

The minimum upper bound BEMSE(νopt
x , νf ) is given by:

BEMSE(νopt
x , νf ) =

Pnνf

2

1 + ρ2

1 − ρ2
−Pnνf

2

1 + ρ2

1 − ρ2

√
2 − √

1 − ρ2

√
2 − √

1 + ρ2
.

(22)
Furthermore, we can show that this last term is also bounded by the
EMSE obtained by adaptation at Xf (k) direction (17):

BEMSE(νopt
x , νf ) ≤ EMSE(0, νf ), (23)

This means that for every νf 	= 0, it exist νopt
x which gives

better steady state than the one obtained with adaptation at filtered
input direction only:

EMSE(νopt
x , νf ) ≤ BEMSE(νopt

x , νf ) ≤ EMSE(0, νf ). (24)

Fig. 3 illustrates such interpretation for a two-tap system de-
scribed by F = [1;−0.95] and an AR(1) input with ρ = 0.95. The
step size µx is adjusted according to (21). We effectively show both
better steady state and better convergence rate when compared to the
same algorithm with adaptation at the direction of Xf (k) only.
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Fig. 3. Illustration of importance of adaptation at two directions.

5. COMPARISON WITH CLASSICAL ALGORITHMS

To point out the effectiveness of our algorithm, we consider an input
signal modeled by an auto regressif model, AR(5), with parameters
[0.9; −0.7; 0.3; −0.6; 0.2]. The impulse response of the system
to be identified is F = [1; 0; 10; −6; −1; 4; 0.1; 5; −2; −0.1]T

(L = 10). The additive noise has a power of Pn = 0.1. The tested
algorithms are the DDP-LMS, the PI-XLMS, the PIFE-XLMS, and
the LMS. To compare the rate of convergence, we choose the case
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where all algorithms achieve the same steady state. Fig. 4 shows
the evolution of the EMSE in the yet mentioned simulation condi-
tions. We note that the performance of the proposed algorithm are
better than those of the LMS, PI-XLMS and PIFE-XLMS. We also
notice the rate convergence improvement when we adapt at the two
directions.

6. CONCLUSION

In this paper, we have presented a new algorithm tailored for high
correlated input signals. It is based on combination of LMS and fil-
tered LMS algorithms. The adaptation process is carried out on two
directions, in the direction of the input and in the direction of the pre-
whitened input. An analytical study of steady state performances is
presented, it justifies that the proposed structure have better steady
state performance when adaptation is carried at two directions. Fur-
thermore, simulation results are presented to support the proposed
algorithm and to compare it to classical filtered XLMS algorithms.
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