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ABSTRACT

Within the framework that two filters are working in parallel,
Stochastic Taps NLMS (ST-NLMS) effectively chooses only active
taps for adaptation, resulting in a good transient behavior when iden-
tifying long, sparse, echo path like systems. However, ST-NLMS
still suffers from the inherent limitation of LMS. This necessitates
a compromise between the opposing fundamental requirements of
fast convergence rate and small misadjustment. Following the same
block diagram as ST-NLMS, the Stochastic Step-size NLMS (SS-
NLMS) scheme is proposed and integrated into the ST-NLMS frame-
work. The combination leads to a novel algorithm called STS-NLMS,
which adjusts step-size and active taps simultaneously. Extensive ex-
periments demonstrate that substantial improvements in the speed of
convergence are achieved by using the proposed algorithm in sta-
tionary environment outperforming both NLMS and ST-NLMS with
the same small level of misadjustment. In addition, the proposed al-
gorithm shows superior tracking capability when the system is sub-
jected to an abrupt disturbance. Furthermore, if nonstationary envi-
ronment is considered, the performance of the proposed algorithm is
still satisfying.

1. INTRODUCTION

In various identification applications, the unknown plant is charac-
terized by an impulse response consisting of a region of nonzero
response with the remainder insignificant. Examples like “sparse”
channels usually include network echo path [1]. Though network
echo cancellers now have echo path of 64 ms in length, the active
part of the echo path is usually less than 6 ms long. Additional taps
of the filter are used to cover the unknown “flat delay” in the long
distance network between echo canceller and hybrid/local-loop cir-
cuit [2].

Exact localization of nonzero parameters may accelerate the con-
vergence of NLMS, as well as save computations wasted at the re-
dundant taps. One of the earliest algorithms to identify sparse re-
sponse is the so called adaptive delay filter [3], which iteratively
finds each active tap and adapts tap-weight value. There are also dif-
ferent approaches in [4, 5, 6, 2]. A recently proposed active taps lo-
calization algorithm is ST-NLMS [7], which adapts two filters with
different active taps in parallel. Their estimation errors are com-
pared. The location and tap-weights of auxiliary filter’s active taps
are used for re-initializing the primary filter, if the latter converge
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faster than the former. The novelty of the ST-NLMS is to select the
new active taps’ position for the auxiliary filter in a stochastic man-
ner.

An obvious disadvantage of the NLMS algorithm as well as its
variants with active taps adaptation, is that compromise must be
made between the transient (convergence and tracking) speed and
the steady-state misadjustment. To deal with this problem, many
variable step-size LMS algorithms have been developed. In addi-
tion, the so-called Complementary Pair LMS (CP-LMS) [8], Paral-
lel Adaptation LMS [9], and Parallel Variable Step-size LMS [10]
are proposed within the similar framework of multi-filters working
in parallel. However, the above mentioned algorithms are not readily
port to ST-NLMS. In this paper, following the same block diagram
as ST-NLMS, Stochastic Step-size NLMS (SS-NLMS) scheme is
proposed and integrated into the ST-NLMS framework. The com-
bination leads to a novel algorithm called STS-NLMS, which ad-
justs step-size and active taps simultaneously. Extensive experiments
demonstrate that substantial improvements in the speed of conver-
gence are achieved by using the proposed algorithm in stationary
and nonstationary environments outperforming both NLMS and ST-
NLMS with the same small level of misadjustment.

The rest of this paper is organized as follows. ST-NLMS is
briefly reviewed in section 2. SS-NLMS and STS-NLMS are in-
troduced and analyzed in section 3 and section 4, respectively. In
section 5, four sets of experiments are performed with the results
presented in detail. Conclusions are summarized in section 6.

2. STOCHASTIC TAPS NLMS

Fig.1 shows the block diagram of the ST-NLMS algorithm, where
two adaptive filters with different active taps are employed working
in parallel.

Let x, d, e, and wi, 0 ≤ i < L denote the input data, de-
sired response, estimate error, and tap-weights of the primary fil-
ter, respectively, where L is the maximum unknown system taps.
For the primary filter, wA = [wM , wM+1, · · · , wN ]T and xA,t =

[xt−M , xt−M−1, · · · , xt−N ]T are defined as the active tap-weights
and corresponding input data, respectively, where [M, N ] denotes
the active taps’ location. w and x denote the whole tap-weights
vector and input vector for concision. For the auxiliary filter, the
variables use the same denotations as that of the primary filter, but
with a superscript “ ′ ”. The recursion of ST-NLMS is displayed in
Fig.2, where θ ∼ U (a, b) denotes that θ is a random number chosen
from a uniform distribution on the interval [a, b].

In ST-NLMS, only the active taps of these two filters are used for
estimation and adaptation. Every K iterations, the primary filter will
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Fig. 1. The ST-NLMS algorithm block diagram.

Given: L > 0, K = L, J = K/2, 0 < µmin < µmax ≤ 1;
Initial: w0 = w′

0 = 0, M = 0, N = L − 1,
M ′ = �θ ∼ U (0, L/2 − 1)�,
N ′ = �θ ∼ U (L/2, L − 1)�;

for t = 1, 2, · · ·
(1) et = dt − xT

A,twA,t;

(2) wA,t+1 = wA,t + µ
etxA,t

xT
A,txA,t

;

(3) e′t = dt − x′T
A,tw

′
A,t;

(4) w′
A,t+1 = w′

A,t + µ
e′tx

′
A,t

x′T
A,tx

′
A,t

;

if mod (t, K) = 0

if
�J−1

j=0 e′2t−j <
�J−1

j=0 e2
t−j

(5) wt+1 = w′
t+1;

(6) M = M ′, N = N ′;
end if
(7) M ′ =

�
θ ∼ U �

0, M+N
2

��
,

N ′ =
�
θ ∼ U �

M+N
2

+ 1, L − 1
��

;

(8) ∀0≤ i<L, w′
i,t+1 =

�
wi,t+1 if M ′ ≤ i ≤ N ′;
0 otherwise.

end if
end for

Fig. 2. The pseudo code implementation of ST-NLMS.

become a clone of the auxiliary one, if the averaged estimate error
of the latter is less than that of the former. Such condition indicates
the auxiliary filter uses more adequate active taps and produces more
accurate tap-weights.

The auxiliary filter will also be re-initialized to find the better
active taps location, based on that of the primary filter. The basic
idea of ST-NLMS is to try different taps in a stochastic way, which
improves its efficiency especially in the condition of abrupt system
change. The tap-weights of the auxiliary filter are also re-initialized
according to the tap-weights of the primary filter, i.e., the auxiliary
filter’s active tap-weights are copied from that of the primary one
and its inactive taps are reset to zeros.

3. STOCHASTIC STEP-SIZE NLMS

ST-NLMS effectively chooses only the active taps for adaptation,
thus its transient behavior is very close to NLMS with a priori in-
formation on where the dominant unknown parameters exactly are.

However, it still suffers from the inherent limitation which necessi-
tates a compromise between the opposing fundamental requirements
of fast convergence rate and small misadjustment. Based on the
framework of two filters working in parallel, SS-NLMS algorithm
is proposed in this section. Then via combining ST-NLMS and the
new proposed variable step-size algorithm, a novel algorithm which
adjusts step-size and active taps simultaneously will be presented in
the following section.

The block diagram of SS-NLMS is exactly the same as that in
Fig.1. Its pseudo code implementation is displayed in Fig.3. Unlike
ST-NLMS, all of the tap-weights in SS-NLMS are adapted. Com-
paring their pseudo codes, one can find the only difference is that
step-size, other than active taps location, is the variable to be find
in stochastic manner. Simulation results proved that its transient be-
havior is very close to NLMS with µmax, while keeping the misad-
justment as small as NLMS with µmin.

Given: L > 0, K = L, J = K/2, 0 < µmin < µmax ≤ 1;
Initial: w0 = w′

0 = 0, µ = µmax, µ′ = θ ∼ U (µmin, µmax);
for t = 1, 2, · · ·

(1) et = dt − xT
t wt;

(2) wt+1 = wt + µ
etxt

xT
t xt

;

(3) e′t = dt − xT
t w′

t;

(4) w′
t+1 = w′

t + µ′ e′txt

xT
t xt

;

if mod (t, K) = 0

if
�J−1

j=0 e′2t−j <
�J−1

j=0 e2
t−j

(5) wt+1 = w′
t+1;

(6) µ = µ′;
end if
(7) µ′ = θ ∼ U (µmin, µmax);
(8) w′

t+1 = wt+1;
end if

end for

Fig. 3. The pseudo code implementation of SS-NLMS.

The original intention of SS-NLMS is to some extent similar to
CP-LMS [8], both with two adaptive filters of different step-sizes
working in parallel. But the stochastic property of SS-NLMS makes
it easy to be merged in ST-NLMS, which yields fast convergence
performance and small misadjustment to spares system identifica-
tion.

4. STOCHASTIC TAPS AND STEP-SIZE NLMS

To combine ST-NLMS and SS-NLMS, a hybrid structure is adopted,
refer Fig.4. The variables in the periodical re-initialization of the pri-
mary filter includes both active taps and step-size, which is an intu-
itive combination. However, the stochastic generation of new active
taps location and new step-size for the auxiliary filter is performed
alternatively. The reason for not to run them at the same time is to
improve the probability that the auxiliary filter overcomes the pri-
mary filter, after the former utilizes the new actives or step-size. In
the other words, the alternative implementation can quickly find a
better step-size or active taps location. In addition, enlarging the
constant P in Fig.4 enables successively searching one parameter
for more times, which improves the success ratio further. However,
a large P may produce unacceptable alteration time and decrease
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convergence rate. In the experiments, P = 5 is found to be a good
balance. Though quantitative theoretical analysis on SS-NLMS and
STS-NLMS is not included in this paper, extensive experiments are
performed to demonstrate their excellent behaviors, both in transient
and steady-state, in stationary and nonstationary environments.

Given: L > 0, K = L, J = K/2, P = 5, 0<µmin <µmax≤1;
Initial: w0 = w′

0 = 0, M = 0, N = L − 1,
M ′ = �θ ∼ U (0, L/2 − 1)�,
N ′ = �θ ∼ U (L/2, L − 1)�,
µ = µmax, µ′ = µmax;

for t = 1, 2, · · ·
(1) et = dt − xT

A,twA,t;

(2) wA,t+1 = wA,t + µ
etxA,t

xT
A,txA,t

;

(3) e′t = dt − x′T
A,tw

′
A,t;

(4) w′
A,t+1 = w′

A,t + µ
e′tx

′
A,t

x′T
A,tx

′
A,t

;

if mod (t, K) = 0

if
�J−1

j=0 e′2t−j <
�J−1

j=0 e2
t−j

(5) wt+1 = w′
t+1;

(6) M = M ′, N = N ′;
(7) µ = µ′;

end if

if mod

��
t

PK

�
, 2

�
= 0

(8) M ′ =
�
θ ∼ U �0, M+N

2

��
,

N ′ =
�
θ ∼ U �M+N

2
+ 1, L − 1

��
;

else
(9) µ′ = θ ∼ U (µmin, µmax);

end if

(10) ∀0≤ i<L, w′
i,t+1 =

	
wi,t+1 if M ′ ≤ i ≤ N ′;
0 otherwise.

end if
end for

Fig. 4. The pseudo code implementation of STS-NLMS.

5. SIMULATIONS RESULTS

A comparison of the STS-NLMS, SS-NLMS, ST-NLMS with NLMS
and Exact Taps NLMS (ET-NLMS) algorithm is demonstrated here
for several cases using correlated stationary and non-stationary input
data in both stationary and non-stationary environment. ET-NLMS,
whose active taps are manually set according to that of the unknown
system, can considered as the “optimum” solution for reference.
Both NLMS and ET-NLMS run with µmax = 1 and µmin = 0.1,
respectively. In all simulations of system identification we assume
that L = 256 and the additive noise at observation is white Gaus-
sian with zero mean. All of the mentioned adaptive algorithms are
performed independently for 100 times, where the squared residuals
are averaged and then processed by a low-pass Butterworth filter to
provide a smooth expression.

Case 1: Stationary correlated input. In this case, the unknown
impulse response is the echo path model 7 of ITU-T recommen-
dation G.168 [1], delayed by 80 taps and tailed by 80 zeros, see
Fig.5(a). The input data excites adaptive filter and unknown sys-
tem is generated and followed by normalization, xt+1 = ρxt + st,

where ρ = 0.9 and st is white Gaussian noise with zero mean. The
variance of measured noise is 1E-3. The leaning curves of these
algorithms are shown in Fig.6. While retaining the same level of
misadjustment as NLMS (µmin) and ET-NLMS (µmin), SS-NLMS
and STS-NLMS, clearly, provides the close speed of convergence as
NLMS (µmax) and ET-NLMS (µmax), respectively.

Case 2: Abrupt change of unknown system. There is an abrupt
change in the unknown impulse response, see Fig.5(b) and (c). Ini-
tially, the unknown channel is the echo path model 7, delayed by 40
taps and tailed by 120 zeros. At iteration number 5E4, it is replaced
by the echo path model 8, delayed by 128 taps and tailed by 30 zeros.
The high correlated input data is generated using the same method in
the first case with ρ = 0.98. The variance of measured noise is 1E-2.
The other settings are the same with the first case. Fig.7 shows the
tracking performance of SS-NLMS is exact the same with its con-
vergence behavior. As to STS-NLMS, there is, but only a little, loss
in tracking speed. The active taps position of ST-NLMS and STS-
NLMS are shown in Fig.8. Both these two algorithms can fleetly
and exactly locate and run after the active taps. Fig.8 also shows
how the step-sizes of SS-NLMS and STS-NLMS initially decrease
and then immediately increase to the large value as a response to the
abrupt change of unknown impulse response to provide a fast speed
of tracking, as well as small misadjustment.

Case 3: Non-stationary input. The non-stationary input data
in this case is generated similarly to the previous cases, but ρ is a
time varying random number uniformly distributed between −0.5
and 0.5. All of the other parameters are as in the first case. The
similar performance with stationary input is attained by ST-NLMS,
SS-NLMS, and STS-NLMS as shown in Fig.9.

Case 4: Non-stationary input and environment. The adaptive fil-
ter in this case is used to model a time-varying system whose impulse
response is generated by a random walk process, ht+1 = ht + gt,
where the unknown response h is initialized the same as that in the
first case and g is white Gaussian vector with zero mean and vari-
ance 1E-3. All of the other parameters were as in the third case.
Fig.10 shows the learning curves in this case. The steady state mis-
adjustments of all algorithms, especially ET-NLMS, are damaged
by nonstationary characteristic, which makes little difference in us-
ing large step-size and small step-size. However, STS-NLMS still
retained the smallest misadjustment while keeping nearly the fastest
transient convergence behavior.

6. CONCLUSION

In this paper, a novel NLMS-based adaptive algorithm with simulta-
neously varied active taps and step-size is proposed to better balance
the trade-off between misadjustment and speed of convergence when
identifying long sparse channel. Both of the active taps’ location
and step-size are stochastically generated according to the estima-
tion errors of the two filters. Compared with the traditional NLMS,
especially where the active taps are manually set, the transient and
steady-state estimation performance of the proposed method are im-
proved significantly in stationary cases, as well as non-stationary en-
vironments. A possible limitation to utilize the proposed algorithm
is that dominant sparse taps are required to be concentrated on some
parts of the long channel. However, in the applications such as net-
work echo canceller, this constraint is generally satisfied.
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Fig. 5. The simulated unknown impulse responses for identification.
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Fig. 6. Learning curves with correlated input.
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Fig. 7. Convergence and tracking performance for an abrupt distur-
bance in unknown system.
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