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ABSTRACT

We specify the general form of proportionate-type NLMS
adaptive algorithms and show that for sufficiently small adap-
tation stepsize parameter, the algorithms can be exponentially
stable, globally convergent and robust to unmodeled dynam-
ics and measurement noise. Also, we show that for small
adaptation stepsize parameter and stationary inputs, behav-
ior of proportionate-type NLMS algorithms can be modeled
by proportionate-type steepest descent algorithms. This mo-
tivates designing of proportionate-type NLMS adaptive algo-
rithms by looking at the adjoint proportionate-type steepest
descent algorithms.

1. INTRODUCTION

Proportionate-type normalized least-mean-square (NLMS)
algorithms have been recently proposed and studied in [1]-
[8]. Their general form is

BG(k + 1)x(k)e(k)
xT(k)G(k+ 1)x(k) + 6

where W (k) is the vector of adaptive filter weights, x(k) is
the input to the adaptive filter and the unknown system to be
identified, (3 is the adaptation stepsize parameter, G(k + 1) is
the gain control matrix, e(k) is the output error, i.e. the differ-
ence between the measurement of the output of the unknown
system and the output of adaptive filter, and ¢ is small positive
real number. The error e(k) can be modeled as

e(k) = xT(k)ywo—xT (k)W (k) +v(k) = xT (k)W(k) +v(k)
2

where wy is the unknown weight vector of the system to be
identified, w(k) = wo — w(k), and v(k) is the output noise.
The gain control matrix G(k+ 1) is diagonal positive-definite
matrix whose diagonal entries are between a small positive
real number p and L, where L is the number of adaptive
weights. The trace of G(k + 1) is equal to L for every k.
G (k + 1) depends only on w(k), i.e. G(k + 1) = F(w(k)).
The original proportionate NLMS algorithms [1], [2] are de-
rived heuristically, with the objective to increase the conver-
gence rate when identifying sparse systems described by w.
The goal of this paper is twofold. First, the paper will pro-
vide general convergence results for proportionate-type

Wik +1) = w(k) + (1)
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NLMS adaptive algorithms. Second, a closeness relation be-
tween the proportionate-type NLMS adaptive algorithms and
the proportionate-type steepest descent algorithms will be
established. The form of the proportinate-type steepest de-
scent algorithms considered here is

z(k+1) = I — uH(k + DR)z(k) 3)

where R is the autocorrelation matrix of the stationary in-
put vector, y is the stepsize parameter, H(k + 1) is the step-
size control matrix, and z(k) = w,y,, — w(k). The matrix
H(k+ 1) is diagonal and positive definite. Its trace is equal to
L. w,; is the optimal (Wiener) solution for the identification
problem and we assume w,,; = W (i.e., the model order
is equal to the order of the unknown system). {w(k)}ren,
is the sequence of iterative solutions for the model weights.
If the conditions for closeness between (3) and (1) are satis-
fied, convergence behavior of the proportionate-type NLMS
adaptive algorithms can be inferred from the analysis of the
proportionate-type steepest descent algorithms.

The existing studies of proportionate-type NLMS adap-
tive algorithms are missing to address these two fundamental
issues for analysis of adaptive algorithms.

2. CONVERGENCE OF PROPORTIONATE-TYPE
NLMS ALGORITHMS FOR SMALL ADAPTATION
STEPSIZE PARAMETER

We will show that the algorithm (1) provides the weight con-
vergence to the optimal value by [9, Theorem 1] for suffi-
ciently small 5. We will assume that there is no output (mea-
surement) noise, i.e. v(k) = 0. Now, we can rewrite (1) as

BG(k + 1)x(k)x" (k)W ( )

wk+1)=w(k) - T B Gk + Dx(k) +
k+ 1)x(k)xT (k) -
= (1 gty e £ ) W@
Let us define
A, — G(k + 1)x(k)xT (k) 5)

xT(k)G(k+ 1)x(k) + 6
It can be easily shown that Ay is bounded. More specifically,
[Ax]is] < A& <1 (6)
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where [A];; is the ij-th entry of Ay, and || A || is the induced
norm of Aj. Now, after choosing P = 1I, [9, Theorem 1]
claims that there exists 3* such that (4) is uniformly exponen-
tially asymptotically stable for every 0 < 8 < g%, if 3m and
Ja such that V&

Z PApii1+ AL, P)z=
i=1

1 m
— Z i1z > o, Vz:|z|l=1.  (7)

We are going to show that the condition (7) is satisfied when
the weight control matrix is slowly varying, i.e.,

Glh+i)~Gk+1), Vki=1,2-,m ()

and when for the normalized input 3m such that Vk

72 x(k+i—1)xT(k+i—1) N
xT(k+i—1)Gk+Dx(k+i—1)+6

d1ag{d1 ), s ,dL(kJ o > 0. ©)]

)} > a1,

Using (8) and (9) we obtain

i Gk +i)x(k+i—1)xT(k+i—1)
2Tk+i—1)GE+i)x(k+i—1)+46

x(k+i—1)x"(k+i—1)
~Gk+1) Z 2T (k+i—-1)Gk+)x(k+i—1)+0

~ G(k + 1 dlag{dl( . ,dL(k‘)} (10)

Z Apyior =

Since in our case G(k + 1) is a diagonal positive definite
matrix with eigenvalues between p and L, we have

1 m
T E ~
7z — A]C+,L‘,1z ~
m £
i=1

z' G(k + 1)diag{d; (k), - ,dp(k)}z > pa’ (11)
i.e., (7) is satisfied with « = pa’. Note that G(k + 1) de-
pends on w(k) and therefore a sufficient small 3 can provide
G(k + 1) that is slowly varying (3* must provide the expo-
nential asymptotic stability and sufficient slowness of w(k)).
The input {x(k)}rez that randomly fluctuates around zero
(’Gaussian zero-mean white noise-like behavior”) can pro-
vide closeness to the diagonality required in (9). The persis-
tently spanning input, i.e., if 3m and 3o’ such that Vk

1 x(k)xT )
7T — " lz) =1 (12
> i 5> @ Ve ] (12)

i=1

implies positive definiteness in (9) since

zTiZ x(k+i—1)xT(k+i—1) ,
m = «xT(k+i-1)G(k+i)x(k+i—-1)+4

_ZT;Z (k+i—1)x"(k+i—1)
m = xT(k+i—1)x(k+i—1)+4¢

xT(k+i—Dx(k+i—1)+6
XT(k+i— )Gk +i)x(k+i—1)+0"
>ZTlZ x(k4+i—1)xT(k+i—1)
m — xT(k+i—1Dx(k+i—1)+46
xT(k+i—-Dx(k+i—1)+6
IxT(k+i—Dx(k+i—1)+o-

J 1 TiZ (kti—Dx"(k+i-1)
L™ m~=xT(k+i—-1x(k+i—1)+¢
- %O/ _— (13)

[9, Theorem 1] considers noiseless case, but since the expo-
nential asymptotic stability is claimed, this guarantees “ro-
bustness in the presence of nonidealities such as unmodeled
dynamics or measurement noise” [9]. The exponential asymp-
totic stability implies that w (k) is exponentially convergent to
wy. Also, the convergence is global since no linearization is
used and the input {z(k)}recz is not assumed bounded [9, p.
397].

3. CLOSENESS OF PROPORTIONATE-TYPE NLMS
AND STEEPEST-DESCENT ALGORITHMS

We will now show that for small 5 and the time-invariant ma-
trix G(k + 1), i.e. G(k+ 1) = G VE, the weight trajec-
tories obtained by a proportionate-type NLMS algorithm can
be close to the weight trajectories obtained by a proportionate
steepest descent algorithm. [10, Theorems 9.1, 9.3, 9.5] es-
tablish closeness between the general primary stochastic sys-
tem and the first order associate averaged system. They claim
closeness of the trajectories of the two systems on the finite
interval [10, Theorem 9.1] and infinite interval [10, Theorem
9.5], as well as of the coefficient fluctuations of the two sys-
tems on the finite interval [10, Theorem 9.3]. In our case the
closeness is established between the primary system

X XT
(k) = () — 0 e ()
g (14)

xT(k)Gx(k) + 6

and the first order associate system

X XT
ik +1) = &(k) — BE {x;ik)(él(kgkl 5} a(k)
Gx(k
—hE {xT(k)Gi(lz) +50() as)
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where v(k) is the output noise and the corresponding output
error is given by (2). Assuming that v(k) is zero-mean noise
independent of x(k), the second expectation in (15) is zero.
Regarding the first expectation, we have

Gx(k)xT (k) B
E { xT (k)Gx(k) + 5} =GP {XT(k)Gx(k:) +6 06

Furthermore, we will assume that {«(k)}rcz is a zero-mean,
white and stationary sequence of Gaussian random variables.
Let us consider

x(k)x" (k) }

1
—xT(k)Gx(k

L
1 2
=7 % (kg (17)

where G = diag{g1,--- ,gr} and z;(k) = [x(k)]; = z(k+

1 —4). Note that
E{ixT(k) } ZE{x )i
L
= Z (18)

It is straightforward to find

b' \

VAR{ixT(k)Gx(k)} L12VAR{X (k) Gx(k)}

= —204 Zgz. (19)
Let us assume that
E { +x' (k)Gx(k )} _ o2
VAR { + xT'(k)Gx(k L
\/ {L ( )} %02 2 ;g?
L
=—>1 (20)
L

(21)
(22)
and
{ Gx(k)xT (k) } ~ GE { x(k)xT (k) }
xT(k)Gx(k)+0 |~ Lo% 46
1

The associate first-order averaged system is

p

a(k+1) = 2(k) ~ 5

——GRz(k). (24)
This is nothing but the steepest descent algorithm (3) with
H(k + 1) = G and u = 3/(Lo? + §). The closeness be-
tween the two systems can be also established by using the
ODE method [11]. For the Duttweiler version of the algo-
rithm (i.e., when normalization is done using x” (k)x(k) + §
instead of x'(k)Gx (k) + ) [1], it is not necessary to assume
(22). In this case when the input {z(k) }rez is a sequence of
zero-mean independent identically distributed random vari-
ables and x(k) has symmetric probability density function,
the associate system is

Ak +1) = #(k) @G Ta (k) (25)

where

B z?(k+1—1)
R=b {XT(k)x(k) o

This is just (3) with H(k+1) = G, R = 0% and yu = K /0?.

By the established closeness, if the matrix H(k + 1) =
H = F(wy) is the optimal one for the associate steepest
descent algorithm in some sense (e.g., it provides the high-
est convergence rate), among the proportionate-type NLMS
adaptive algorithms, the one using this matrix, i.e. the one
with G(k + 1) = F(wy), will be optimal as well. Of course,
the proportionate-type NLMS adaptive algorithms do not
know wy and hence F(wy). But if G(k + 1) = F(w(k)),
it will converge to the optimal one. How this transition period
affects convergence properties and whether the gain control
G(k + 1) = F(w(k)) is optimal, are open questions. An an-
alytical approach to analyze this is still missing. Simulations
presented in [7] [8] support the choice G(k + 1) = F(w(k)).

}, i=1,---,L. (26)

4. CONCLUSIONS

The gain control matrix G(k + 1) in the proportionate-type
NLMS algorithms is diagonal positive-definite bounded ma-
trix. Assuming sufficiently small adaptation stepsize param-
eter 3 and the persistently exciting input, the proportionate-
type NLMS algorithms guarantee convergence of the adap-
tive filter weights to the optimal values [9, Theorem 1]. The
convergence is strict in the noiseless case, while in the noisy
case small fluctuations around the optimal values are present.
Since the matrix G(k + 1) in the proportionate-type NLMS
algorithms depends only on the adaptive filter weights, the
convergence of weights brings the convergence of the matrix
G(k + 1) as well.

When the gain control matrix H(k 4 1) of the propor-
tionate-type steepest descent algorithm and the gain control
matrix G(k + 1) of the proportionate-type NLMS algorithm
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are equal to each other and time-invariant (i.e., H(k + 1) =
G(k + 1) = G), for sufficiently small adaptation stepsize
parameter 3, the zero-mean white stationary Gaussian input

x(k)and L > 4/2 Zle g7 (where L is the adaptive filter or-
der and g;, ¢ = 1,--- , L are the entries of the matrix G), the
weight trajectories obtained by the proportionate-type steep-
est descent algorithm and the weight trajectories obtained by
the proportionate-type NLMS algorithm can be very close to
each other [9, Theorems 9.1, 9.3, 9.5] [11, Theorem 1]. The
above condition involving L and g;, ¢ = 1,--- , L provides
that the normalizing factor in the proportionate-type NLMS
algorithm can be approximated as a constant.

If the proportionate-type steepest descent algorithm has
some special property for a specific value of time-invariant
H(k+1) = G, it will be expected that the proportionate-type
NLMS algorithm will have the similar property if its matrix
G(k + 1) is close to the specific value G. When the specific
value depends on the optimal weight values, the matrix G (k+
1) of the realizable proportionate-type NLMS algorithm can
converge to the value.
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