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ABSTRACT
We specify the general form of proportionate-type NLMS
adaptive algorithms and show that for sufficiently small adap-
tation stepsize parameter, the algorithms can be exponentially
stable, globally convergent and robust to unmodeled dynam-
ics and measurement noise. Also, we show that for small
adaptation stepsize parameter and stationary inputs, behav-
ior of proportionate-type NLMS algorithms can be modeled
by proportionate-type steepest descent algorithms. This mo-
tivates designing of proportionate-type NLMS adaptive algo-
rithms by looking at the adjoint proportionate-type steepest
descent algorithms.

1. INTRODUCTION

Proportionate-type normalized least-mean-square (NLMS)
algorithms have been recently proposed and studied in [1]-
[8]. Their general form is

ŵ(k + 1) = ŵ(k) +
βG(k + 1)x(k)e(k)

xT (k)G(k + 1)x(k) + δ
(1)

where ŵ(k) is the vector of adaptive filter weights, x(k) is
the input to the adaptive filter and the unknown system to be
identified, β is the adaptation stepsize parameter, G(k +1) is
the gain control matrix, e(k) is the output error, i.e. the differ-
ence between the measurement of the output of the unknown
system and the output of adaptive filter, and δ is small positive
real number. The error e(k) can be modeled as

e(k) = xT (k)w0−xT (k)ŵ(k)+v(k) = xT (k)w̃(k)+v(k)
(2)

where w0 is the unknown weight vector of the system to be
identified, w̃(k) = w0 − ŵ(k), and v(k) is the output noise.
The gain control matrix G(k+1) is diagonal positive-definite
matrix whose diagonal entries are between a small positive
real number ρ and L, where L is the number of adaptive
weights. The trace of G(k + 1) is equal to L for every k.
G(k + 1) depends only on ŵ(k), i.e. G(k + 1) = F(ŵ(k)).
The original proportionate NLMS algorithms [1], [2] are de-
rived heuristically, with the objective to increase the conver-
gence rate when identifying sparse systems described by w0.

The goal of this paper is twofold. First, the paper will pro-
vide general convergence results for proportionate-type

NLMS adaptive algorithms. Second, a closeness relation be-
tween the proportionate-type NLMS adaptive algorithms and
the proportionate-type steepest descent algorithms will be
established. The form of the proportinate-type steepest de-
scent algorithms considered here is

z̃(k + 1) = (I − µH(k + 1)R)z̃(k) (3)

where R is the autocorrelation matrix of the stationary in-
put vector, µ is the stepsize parameter, H(k + 1) is the step-
size control matrix, and z̃(k) = wopt − w(k). The matrix
H(k+1) is diagonal and positive definite. Its trace is equal to
L. wopt is the optimal (Wiener) solution for the identification
problem and we assume wopt = w0 (i.e., the model order
is equal to the order of the unknown system). {w(k)}k∈N0

is the sequence of iterative solutions for the model weights.
If the conditions for closeness between (3) and (1) are satis-
fied, convergence behavior of the proportionate-type NLMS
adaptive algorithms can be inferred from the analysis of the
proportionate-type steepest descent algorithms.

The existing studies of proportionate-type NLMS adap-
tive algorithms are missing to address these two fundamental
issues for analysis of adaptive algorithms.

2. CONVERGENCE OF PROPORTIONATE-TYPE
NLMS ALGORITHMS FOR SMALL ADAPTATION

STEPSIZE PARAMETER

We will show that the algorithm (1) provides the weight con-
vergence to the optimal value by [9, Theorem 1] for suffi-
ciently small β. We will assume that there is no output (mea-
surement) noise, i.e. v(k) ≡ 0. Now, we can rewrite (1) as

w̃(k + 1) = w̃(k) − βG(k + 1)x(k)xT (k)w̃(k)
xT (k)G(k + 1)x(k) + δ

=
(
I − β

G(k + 1)x(k)xT (k)
xT (k)G(k + 1)x(k) + δ

)
w̃(k).(4)

Let us define

Ak =
G(k + 1)x(k)xT (k)

xT (k)G(k + 1)x(k) + δ
. (5)

It can be easily shown that Ak is bounded. More specifically,

|[Ak]ij | ≤ ‖Ak‖ < 1 (6)
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where [Ak]ij is the ij-th entry of Ak and ‖Ak‖ is the induced
norm of Ak. Now, after choosing P = 1

2I, [9, Theorem 1]
claims that there exists β∗ such that (4) is uniformly exponen-
tially asymptotically stable for every 0 < β < β∗, if ∃m and
∃α such that ∀k

zT 1
m

m∑
i=1

(PAk+i−1 + AT
k+i−1P)z =

zT 1
m

m∑
i=1

Ak+i−1z > α, ∀z : ‖z‖ = 1. (7)

We are going to show that the condition (7) is satisfied when
the weight control matrix is slowly varying, i.e.,

G(k + i) ≈ G(k + 1), ∀k, i = 1, 2, · · · ,m (8)

and when for the normalized input ∃m such that ∀k

1
m

m∑
i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)G(k + 1)x(k + i − 1) + δ

≈

diag{d1(k), · · · , dL(k)} > α′I, α′ > 0. (9)

Using (8) and (9) we obtain

m∑
i=1

Ak+i−1 =
m∑

i=1

G(k + i)x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)G(k + i)x(k + i − 1) + δ

≈ G(k + 1)
m∑

i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)G(k + 1)x(k + i − 1) + δ

≈ G(k + 1)diag{d1(k), · · · , dL(k)}. (10)

Since in our case G(k + 1) is a diagonal positive definite
matrix with eigenvalues between ρ and L, we have

zT 1
m

m∑
i=1

Ak+i−1z ≈

zT G(k + 1)diag{d1(k), · · · , dL(k)}z > ρα′ (11)

i.e., (7) is satisfied with α = ρα′. Note that G(k + 1) de-
pends on ŵ(k) and therefore a sufficient small β can provide
G(k + 1) that is slowly varying (β∗ must provide the expo-
nential asymptotic stability and sufficient slowness of ŵ(k)).
The input {x(k)}k∈Z that randomly fluctuates around zero
(”Gaussian zero-mean white noise-like behavior”) can pro-
vide closeness to the diagonality required in (9). The persis-
tently spanning input, i.e., if ∃m and ∃α′′ such that ∀k

zT 1
m

m∑
i=1

x(k)xT (k)
xT (k)x(k) + δ

z > α′′, ∀z : ‖z‖ = 1 (12)

implies positive definiteness in (9) since

zT 1
m

m∑
i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)G(k + i)x(k + i − 1) + δ

z

= zT 1
m

m∑
i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)x(k + i − 1) + δ

× xT (k + i − 1)x(k + i − 1) + δ

xT (k + i − 1)G(k + i)x(k + i − 1) + δ
z

> zT 1
m

m∑
i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)x(k + i − 1) + δ

× xT (k + i − 1)x(k + i − 1) + δ

LxT (k + i − 1)x(k + i − 1) + δ
z

>
1
L

zT 1
m

m∑
i=1

x(k + i − 1)xT (k + i − 1)
xT (k + i − 1)x(k + i − 1) + δ

z

>
1
L

α′′ = α′. (13)

[9, Theorem 1] considers noiseless case, but since the expo-
nential asymptotic stability is claimed, this guarantees “ro-
bustness in the presence of nonidealities such as unmodeled
dynamics or measurement noise” [9]. The exponential asymp-
totic stability implies that ŵ(k) is exponentially convergent to
w0. Also, the convergence is global since no linearization is
used and the input {x(k)}k∈Z is not assumed bounded [9, p.
397].

3. CLOSENESS OF PROPORTIONATE-TYPE NLMS
AND STEEPEST-DESCENT ALGORITHMS

We will now show that for small β and the time-invariant ma-
trix G(k + 1), i.e. G(k + 1) = G ∀k, the weight trajec-
tories obtained by a proportionate-type NLMS algorithm can
be close to the weight trajectories obtained by a proportionate
steepest descent algorithm. [10, Theorems 9.1, 9.3, 9.5] es-
tablish closeness between the general primary stochastic sys-
tem and the first order associate averaged system. They claim
closeness of the trajectories of the two systems on the finite
interval [10, Theorem 9.1] and infinite interval [10, Theorem
9.5], as well as of the coefficient fluctuations of the two sys-
tems on the finite interval [10, Theorem 9.3]. In our case the
closeness is established between the primary system

w̃(k+) = w̃(k) − β
Gx(k)xT (k)

xT (k)Gx(k) + δ
w̃(k)

−β
Gx(k)

xT (k)Gx(k) + δ
v(k) (14)

and the first order associate system

z̃(k + 1) = z̃(k) − βE

{
Gx(k)xT (k)

xT (k)Gx(k) + δ

}
z̃(k)

−βE

{
Gx(k)

xT (k)Gx(k) + δ
v(k)

}
(15)
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where v(k) is the output noise and the corresponding output
error is given by (2). Assuming that v(k) is zero-mean noise
independent of x(k), the second expectation in (15) is zero.
Regarding the first expectation, we have

E

{
Gx(k)xT (k)

xT (k)Gx(k) + δ

}
= GE

{
x(k)xT (k)

xT (k)Gx(k) + δ

}
.

(16)
Furthermore, we will assume that {x(k)}k∈Z is a zero-mean,
white and stationary sequence of Gaussian random variables.
Let us consider

1
L

xT (k)Gx(k) =
1
L

L∑
i=1

x2
i (k)gi (17)

where G = diag{g1, · · · , gL} and xi(k) = [x(k)]i = x(k +
1 − i). Note that

E

{
1
L

xT (k)Gx(k)
}

=
1
L

L∑
i=1

E{x2
i (k)}gi

= σ2 1
L

L∑
i=1

gi = σ2. (18)

It is straightforward to find

VAR

{
1
L

xT (k)Gx(k)
}

=
1
L2

VAR{xT (k)Gx(k)}

=
1
L2

2σ4
L∑

i=1

g2
i . (19)

Let us assume that

E
{

1
LxT (k)Gx(k)

}
√

VAR
{

1
LxT (k)Gx(k)

} =
σ2

1
Lσ2

√
2

L∑
i=1

g2
i

=
L√

2
L∑

i=1

g2
i

� 1 (20)

i.e.,

L �
√√√√2

L∑
i=1

g2
i . (21)

Now we can write

xT (k)Gx(k) = L
1
L

xT (k)Gx(k)

≈ LE

{
1
L

xT (k)Gx(k)
}

= Lσ2 (22)

and

E

{
Gx(k)xT (k)

xT (k)Gx(k) + δ

}
≈ GE

{
x(k)xT (k)
Lσ2 + δ

}

=
1

Lσ2 + δ
GR. (23)

The associate first-order averaged system is

z̃(k + 1) = z̃(k) − β

Lσ2 + δ
GRz̃(k). (24)

This is nothing but the steepest descent algorithm (3) with
H(k + 1) = G and µ = β/(Lσ2 + δ). The closeness be-
tween the two systems can be also established by using the
ODE method [11]. For the Duttweiler version of the algo-
rithm (i.e., when normalization is done using xT (k)x(k) + δ
instead of xT (k)Gx(k)+δ) [1], it is not necessary to assume
(22). In this case when the input {x(k)}k∈Z is a sequence of
zero-mean independent identically distributed random vari-
ables and x(k) has symmetric probability density function,
the associate system is

z̃(k + 1) = z̃(k) − βκ

σ2
Gσ2Iz̃(k) (25)

where

κ = E

{
x2(k + 1 − i)
xT (k)x(k) + δ

}
, i = 1, · · · , L. (26)

This is just (3) with H(k+1) = G, R = σ2I and µ = βκ/σ2.
By the established closeness, if the matrix H(k + 1) =

H = F(w0) is the optimal one for the associate steepest
descent algorithm in some sense (e.g., it provides the high-
est convergence rate), among the proportionate-type NLMS
adaptive algorithms, the one using this matrix, i.e. the one
with G(k + 1) = F(w0), will be optimal as well. Of course,
the proportionate-type NLMS adaptive algorithms do not
know w0 and hence F(w0). But if G(k + 1) = F(ŵ(k)),
it will converge to the optimal one. How this transition period
affects convergence properties and whether the gain control
G(k + 1) = F(ŵ(k)) is optimal, are open questions. An an-
alytical approach to analyze this is still missing. Simulations
presented in [7] [8] support the choice G(k +1) = F(ŵ(k)).

4. CONCLUSIONS

The gain control matrix G(k + 1) in the proportionate-type
NLMS algorithms is diagonal positive-definite bounded ma-
trix. Assuming sufficiently small adaptation stepsize param-
eter β and the persistently exciting input, the proportionate-
type NLMS algorithms guarantee convergence of the adap-
tive filter weights to the optimal values [9, Theorem 1]. The
convergence is strict in the noiseless case, while in the noisy
case small fluctuations around the optimal values are present.
Since the matrix G(k + 1) in the proportionate-type NLMS
algorithms depends only on the adaptive filter weights, the
convergence of weights brings the convergence of the matrix
G(k + 1) as well.

When the gain control matrix H(k + 1) of the propor-
tionate-type steepest descent algorithm and the gain control
matrix G(k + 1) of the proportionate-type NLMS algorithm
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are equal to each other and time-invariant (i.e., H(k + 1) =
G(k + 1) = G), for sufficiently small adaptation stepsize
parameter β, the zero-mean white stationary Gaussian input

x(k) and L �
√

2
∑L

i=1 g2
i (where L is the adaptive filter or-

der and gi, i = 1, · · · , L are the entries of the matrix G), the
weight trajectories obtained by the proportionate-type steep-
est descent algorithm and the weight trajectories obtained by
the proportionate-type NLMS algorithm can be very close to
each other [9, Theorems 9.1, 9.3, 9.5] [11, Theorem 1]. The
above condition involving L and gi, i = 1, · · · , L provides
that the normalizing factor in the proportionate-type NLMS
algorithm can be approximated as a constant.

If the proportionate-type steepest descent algorithm has
some special property for a specific value of time-invariant
H(k+1) = G, it will be expected that the proportionate-type
NLMS algorithm will have the similar property if its matrix
G(k + 1) is close to the specific value G. When the specific
value depends on the optimal weight values, the matrix G(k+
1) of the realizable proportionate-type NLMS algorithm can
converge to the value.
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