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ABSTRACT

Super-resolution reconstruction of image sequences is highly de-
pendent on the quality of the motion estimation between sucessive
frames. This work presents a statistical analysis of the Least Mean
Square (LMS) algorithm applied to super-resolution reconstruction
of an image sequence. Deterministic recursions are derived for the
mean and mean square behaviors of the reconstruction error as func-
tions of the registration errors. The new model describes the be-
havior of the algorithm in realistic situations, and significantly im-
proves the accuracy of a simple model available in the literature.
Monte Carlo simulations show good agreement between actual and
predicted behaviors.

1. INTRODUCTION

An approach to improve digital image quality which has attracted
large interest in the last decade uses super-resolution reconstruction
(SRR). SRR consists basically of combining multiple low-resolution
images of the same scene or object to form a higher resolution image.
Reference [1] reviews several important results on SRR available in
the literature.

One of the major issues regarding SRR algorithms is their de-
pendence on an accurate registration [2, 3, 4]. Wang and Qi [3]
proposed a robust SRR algorithm based on Kalman filtering. The
registration uncertainties are included in the filter equations, based
on the estimation of the dynamical model errors due to the registra-
tion errors. Even though the results obtained in [3] are promising,
convergence and computational complexity issues still need to be
addressed. In [4], Lee and Kang define a constrained least-squares
problem in which a signal dependent regularization functional, which
incorporates the registration error, is inspired by regularized multi-
channel image deconvolution techniques. A gradient descent algo-
rithm is then employed to minimize the resulting cost function. The
computational complexity is compatible with conventional SRR al-
gorithms. In [5, 6], two adaptive algorithms based on the Kalman
filtering have recently been proposed for SRR of image sequences.
Differently from the traditional Kalman algorithm, no matrix inver-
sion is required to reconstruct the high resolution image.

In spite of the justified concern about the robustness of SRR al-
gorithms to registration errors, little has been done to theoretically
quantify the effects of such errors on the reconstructed image or se-
quence. Most of the times, different solutions to the SRR problem
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are compared based on subjective observations of the results or by
emphasizing distinct areas of application [3, 4]. In [5, 7], a very
simplified performance analysis of the adaptive SRR algorithms is
presented. The analysis, however, is limited to convergence con-
ditions and considers a worst case behavior under very restrictive
circumstances. These results tell very little about the behavior of the
algorithms in practical situations.

This work is a contribution to the quantification of the sensitiv-
ity of SRR methods to errors in the image registration process. The
application of interest is the real-time SRR of image sequences, for
which fast and accurate registration tends to be more important for
performance than in the case of still images [2, 3, 4]. The least-
mean-square algorithm proposed in [5, 6] (here called LMS-SRR) is
analyzed and a deterministic model for its stochastic behavior is pro-
posed. The new model permits the determination of the mean-square
high-resolution estimation error for a given level of registration error.

In Section 2, we re-derive the LMS-SRR algorithm [5] by apply-
ing the stochastic gradient approach directly to the original image
estimation problem. In Section 3, we present the statistical analy-
sis and derive the analytical model for the algorithm behavior. In
Section 4 we present simulation results to verify the accuracy of the
theoretical model. In this paper, low-resolution (observed) images
and high-resolution images will be referred to as LR and HR im-
ages, respectively.

2. THE LMS-SRR ALGORITHM

2.1. The signal models

Given the N × N matrix representation of an LR (observed) digital
image Y(t) and an M × M (M > N ) matrix representation of
the original HR digital image X(t), the acquisition process can be
expressed as

y(t) = D(t)x(t) + e(t) , (1)

where vectors y(t) (N2×1) and x(t) (M2×1) are the lexicographic
representations of the degraded and original images, respectively, at
time instant t. D(t) is an N2 × M2 matrix that models the degra-
dation due to sub-sampling and blurring, assumed to be known. The
N2 ×1 vector e(t) models the observation (electronic) noise, which
is assumed stationary in space, statistically independent of y(t) and
x(t), white, Gaussian, with zero mean and with space autocorrela-
tion matrix Re(t) = σ2

e(t)I. σ2
e(t) is assumed to be determined

from camera tests [8].
The dynamics of the input signal is modelled by

x(t) = G(t)x(t − 1) + s(t) , (2)
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Table 1. LMS algorithm applied to SRR

Initialization:
• Initialize K (Number of iterations for each t)
• x̂0(0) = interpolation of y(0)

Algorithm:⎧⎪⎪⎨
⎪⎪⎩

Loop in t = 0, 1, 2, . . .{
Loop in k = 0, 1, . . . , K − 1
x̂k+1(t) = x̂k(t) + µDT(t)[y(t) − D(t)x̂k(t)]

x̂0(t + 1) = G(t + 1)x̂K(t)

where G(t) is the warp matrix that describes the relative displace-
ment from x(t− 1) to x(t). In this paper we assume the occurrence
of whole-image translational movement only. This is the simplest
case to handle and can be assumed in several practical applications
[9, 10]. Vector s(t) models the innovations in x(t).

The construction of the warp matrix G(t) depends on the tech-
nique used to handle the boundary conditions after image warping.
For SRR, the best perceptual results are usually achieved assuming
the Neumann conditions [11]. To simplify the mathematical mod-
eling, we assume circular periodicity in the analysis. Simulation
results will show that the effect of this simplifying assumption is not
significant in determining the actual algorithm behavior.

2.2. The LMS-SRR adaptive algorithm

Several SRR solutions are based on the minimization of the norm
‖ε(t)‖ = ‖y(t) − D(t)x̂(t)‖ [1, and references therein], where
x̂(t) is the estimated image and ε(t) is the estimate of the obser-
vation noise vector. The LMS-SRR algorithm attempts to mini-
mize the mean-square error (MSE) E{‖ε(t)‖2} [6], where E{·}
denotes statistical expectation. Thus, the cost function is defined
as JMS(t) = E{‖ε(t)‖2 | x̂(t)}. According to the steepest descent
method, the updating of the estimate x̂(t) to minimize JMS(t) is in
the negative direction of its gradient. Thus,

∇JMS(t) =
∂JMS(t)

∂x̂(t)
= −2DT(t){E[y(t)] − D(t)x̂(t)} (3)

and the recursive update equation for x̂(t) is given by x̂k+1(t) =
x̂k(t)−(µ/2)∇JMS(t). Notice that the performance surface JMS(t)
is defined for a specific time instant t.

Approximating the steepest descent algorithm by its stochastic
version leads to the LMS-SRR adaptive algorithm. Approximating
(3) by its instantaneous estimate [12] yields

x̂k+1(t) = x̂k(t) + µDT(t)[y(t) − D(t)x̂k(t)] , (4)

which is the stochastic recursion for the LMS-SRR adaptive algo-
rithm. The time update of (4) is based on the signal dynamics (2),
which is determined by the warp matrix G(t). The complete LMS-
SRR algorithm is described in Table 1.

3. STATISTICAL ANALYSIS

Hereafter G(t) will be considered deterministic and will represent
the warp matrix free from displacement estimation errors. The ma-
trix Ĝ(t) will represent the estimated warp matrix. Considering that

only the estimate Ĝ(t) is available during the reconstruction pro-
cess, the time update equation of the actual LMS-SRR algorithm is
given by:

x̂0(t + 1) = Ĝ(t + 1)x̂K(t) , (5)

where Ĝ(t) can be modelled as [5, 4]

Ĝ(t) = G(t) + ∆G(t) . (6)

where ∆G(t) is a random matrix with properties determined by the
registration method and by the image sequence. Grouping together
(4) and (5) leads to the recursive equation that describes the LMS-
SRR-K algorithm, with K iterations by time sample:

x̂(t) = AKĜ(t)x̂(t − 1) + µ

K−1∑
n=0

AnDT(t)y(t) , (7)

where A = [I − µDT(t)D(t)].
Let us define the HR image estimation error as v(t) = x̂(t) −

x(t). From (1), (2), (6) and (7) it can be shown that

v(t) = AKG(t)v(t − 1) + AK∆G(t)x̂(t − 1)

− AKs(t) + µ

K−1∑
n=0

AnDT(t)e(t) . (8)

Eq. (8) can be used to determine the mean and fluctuation behaviors
of the HR image reconstruction error v(t).

3.1. Statistical assumptions and approximations

The following approximations and assumptions are used in the fol-
lowing statistical analysis: (A1) The vector ∆G(t)x̂(t − 1) is as-
sumed to be zero-mean, i.i.d. with M2 × M2 autocorrelation ma-
trix Rr(t) = σ2

r(t)I and statistically independent of the observation
noise vector e(t). This assumption has been used in [3] with good
results; (A2) The effect of outliers in the dynamics of the image are
neglected. It tends to lead to better results as the size of the image
increases. Thus, (2) is approximated by x(t) � G(t)x(t− 1); (A3)
The effects of the statistical dependence between the registration er-
ror matrix ∆G(t) and the HR images x(t − 1) and x̂(t − 1) are
neglected. The impact of this assumption on the validity of the ana-
lytical model will depend on the specific registration algorithm used;
(A4) The observation noise vector e(t) is assumed to be statistically
independent of the registration errors ∆G(t) and of any other signal
in the system.

3.2. The mean reconstruction error behavior

Taking the expected value of (8) and using A1–A4 yields a model
for the mean behavior of the HR image reconstruction error:

E[v(t)] = [I − µDT(t)D(t)]KG(t) E[v(t − 1)] . (9)

3.3. The mean-square reconstruction error behavior

The fluctuations of the reconstruction error about the mean can be
studied through the squared norm of v(t), E[vT(t)v(t)]. This norm
can be evaluated as tr{E[v(t)vT(t)]} = tr{K(t)}, where K(t) is
the autocorrelation matrix of v(t) and tr{ · } denotes the trace of a
matrix.
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Post-multiplying (8) by its transpose, taking the expected value,
and using A1–A4 and (6) yields

K(t) = AK {
G(t)K(t − 1)GT(t) + Rr(t)

+ G(t) E[v(t − 1)x̂T(t − 1)]{E[ĜT(t)] − GT(t)}
+ {E[Ĝ(t)] − G(t)}E[x̂(t − 1)vT(t − 1)]GT(t)

}
AK

+ µ2
K−1∑
n=0

AnDT(t)Re(t)D(t)

K−1∑
n=0

An . (10)

The evaluation of the second and third lines of (10) requires de
evaluation of E[x̂(t)vT(t)]. Since v(t) = x̂(t)−x(t), this expecta-
tion can be written as

E[x̂(t)vT(t)] = K(t) + Rxx̂(t) − Rx(t) , (11)

where Rxx̂(t) = E[x(t)x̂T(t)] and Rx(t) = E[x(t)xT(t)].
The matrix Rx(t) is a function of the HR image to be estimated.

The cross-correlation matrix Rxx̂(t) can be determined recursively.
Using (7), (1), A2–A4 and the zero-mean property of e(t),

Rxx̂(t) = G(t)Rxx̂(t − 1) E[ĜT(t)]AK

+ µRx(t)DT(t)D(t)

K−1∑
n=0

An . (12)

An expression for the correlation matrix Rr(t) is also needed
in (10). Considering A1, σ2

r(t) = tr[Rr(t)]/M2, where M2 is the
number of pixels of the high resolution images. Using A3 and the
commutative property of the trace of a product of matrices, we have

tr[Rr(t)] = tr{Rx̂(t − 1) E[∆GT(t)∆G(t)]} , (13)

where Rx̂(t) = E[x̂(t)x̂T(t)]. Manipulating algebraically the ex-
pression of Rx̂(t), as in (11), yields Rx̂(t) = K(t) + RT

xx̂(t) +
Rxx̂(t) − Rx(t).

Form (6), the expected value E[∆GT(t)∆G(t)] in (13) can be
written as

E[∆GT(t)∆G(t)] = E[ĜT(t)Ĝ(t)] − E[ĜT(t)]G(t)

− GT(t) E[Ĝ(t)] + GT(t)G(t) . (14)

Finally, the expected values E[Ĝ(t)] and E[ĜT(t)Ĝ(t)], which
appear in (10)–(14), must be estimated based on the characteristics
of the registration algorithm used and on the statistical properties of
the image sequence. Next section discusses the estimation of these
moments for some particular cases of practical interest.

3.4. Implementation

We show in this section that E[Ĝ(t)] and E[ĜT(t)Ĝ(t)] can be es-
timated with reasonable computational cost when: (i) The relative
motion between the images is global and translational with integer
steps in the HR grid; (ii) G(t) is built assuming circular periodicity
of the image to determine the boundary pixels after movement.

Under these conditions, G(t) works like a permutation matrix
to the rows of x(t), in (2), and therefore is full rank. Thus, the esti-
mated warp matrix Ĝ(t) can be also represented as a matrix product:

Ĝ(t) = G(t) + ∆G(t) = G̃(t)G(t) . (15)

In order to solve (14), follows from (15) that E[Ĝ(t)]=E[G̃(t)]G(t)

and E[ĜT(t)Ĝ(t)] = G(t)T E[G̃(t)TG̃(t)]G(t). Assuming that

Table 2. LMS algorithm applied to SRR

Initialization:
Rxx̂(0) = 0; x̂(1) = interpolation of y(1)
v(1) = x̂(1) − x(1); K(1) = v(1)vT(1)
L = number of iterations to Monte Carlo simulations
E[G̃(t)] � 1

L

∑L
i=1 G̃(i)

E[G̃T(t)G̃(t)] � 1
L

∑L
i=1 G̃T(i)G̃(i)

E[Ĝ(1)] = E[G̃(1)]G(1)
Algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Loop in t = 2, 3, 4, . . .
Compute Rxx̂(t − 1) via Eq. (12)
Compute E[∆GT(t)∆G(t)] via Eq. (14)
Compute σ2

r(t) = tr[Rr(t)]/M
2 via Eq. (13)

Compute Rr(t) = σ2
r(t)I

Compute E[x̂(t − 1)vT(t − 1)] via Eq. (11)
Compute K(t) via Eq. (10)

the image sequence we want to reconstruct is stationary (for exam-
ple, when the camera motion is around an object), it is reasonable
to expect the motion estimation error to be also stationary. Then,
E[G̃(t)] and E[G̃(t)TG̃(t)] are not functions of t and can be es-
timated a priori and used in all iterations of the recursive model,
reducing considerably the computational cost. The final algorithm
to determine K(t) is detailed in Table 2.

4. SIMULATION RESULTS

In all simulations presented in this section, we have used M = 20,
N = 10, L = 500 and σ2

e(t) = 10. The global displacement
vectors d(t) = [dr(t), dc(t)] were generated from a random walk
process. Such vectors were considered known a priori. The regis-
tration error ∆d(t) = [∆dr(t), ∆dc(t)] was assumed zero-mean
Gaussian noise. This assumption yields good results even for regis-
tration algorithms for which this error is known to be non-Gaussian
[13]. ∆dl(t) and ∆dc(t) are assumed independent of each other,
with variances σ2

∆dl
and σ2

∆dc
estimated from the registration algo-

rithm. Blurring is not considered, but could be easily incorporated
into D(t). Rx(t) has been estimated from the original HR images
at each time instant.

The registration algorithms proposed in [14] and [13] were con-
sidered in the simulations. The results were compared with the
known motion case (free from estimation errors). For the algorithm
in [14], the global velocity vector was estimated by the average pixel
velocity vector.

The simulation results for the models in (9) and in Table 2 are
presented in Figs. 1 and 2. The ensemble used to generate these
figures was composed by several different scenes. Note that Fig. 1
presents only the central pixel error. Fig. 2 presents the fluctuations
of the reconstruction error about the mean, divided by the number of
pixels of the image. In the known motion case, the pixels from the
five boundary rows and columns of the reconstructed (HR) image
are not considered. This minimizes the discrepancies between sim-
ulation and theory caused by boundary effects. In the other cases,
this effect can be neglected when compared to the registration error
noise. The additive noise for the acquisition model (1) has been gen-
erated to obtain the following signal-to-noise rates: PSNR � 38dB
e SNR � 23dB. These rates were computed considering the vectors
y(t) and D(t)x(t).
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Fig. 1. Central pixel (210th element of v(t)) mean reconstruction
error: K = 4 ; µ = 0.1.
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Fig. 2. Mean square reconstruction error: K = 4 ; µ = 0.1.

For D(t) = I we have the situation modelled in [5]. In this
case, the results obtained using the model proposed here and the one
from [5]) are compared in Fig. 3. Note that the new model provides
a much superior estimation of the algorithm behavior.

5. CONCLUSIONS

This paper has presented an analytical model for predicting the stochas-
tic behavior of the LMS algorithm proposed in [6]. Deterministic re-
cursive equations were derived for the mean and mean-square recon-
struction error as functions of the registration errors. The proposed
model yields a very good agreement with Monte Carlo simulations
in both transient and steady-state phases of adaption. Relative to the
existing model [5], the new model: (i) estimates the algorithm be-
havior considering super-resolution (sub-sampling); (ii) estimates
the mean and the fluctuation behaviors of the reconstruction error
during transient and in steady-state.
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