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ABSTRACT

This work presents a modified version of the variable step 

size Kwong and Johnston’s algorithm (VSS) for LMS 

adaptive filtering. The new proposal, called Robust Variable 

Step Size (RVSS), presents less sensitivity to the power of 

the measurement noise with only a very small increase in 

the computational complexity. A theoretical analysis 

demonstrates the main properties of the new algorithm. For 

white Gaussian input signals the RVSS presents the same 

performance than the original VSS in a noise free 

environment. Simulation results are provided, showing the 

better performance of the new algorithm. The RVSS should 

find application, for example, in telephony applications 

when double talking interferences are significant. 

1. INTRODUCTION 

Adaptive filters have been extensively applied to the 

telecommunication area, such as in hands-free telephony, 

hearing aids and audio and videoconference systems [1,2]. 

The Least Mean Square (LMS) adaptive filter family is 

attractive for implementation of real-time echo canceling 

and noise suppression systems due to its low computational 

complexity and robustness [3,4]. One important member of 

this family is the NLMS algorithm, which combines the 

simplicity of the conventional LMS algorithm with the 

robustness to the input signal power variation [5]. 

It is well known that the performance of LMS adaptive 

filters depends directly on the choice of the step size 

parameter. Larger step sizes lead to faster adaptation 

(convergence speed) at the expense of a larger 

misadjustment. Smaller step sizes can provide improved 

steady-state performance (smaller misadjustment) at the cost 

of a slower adaptation. 

Variable step size strategies are common solutions for 

obtaining both fast tracking and good steady-state 

performance. However, in order to remain attractive for 

real-time applications, these strategies must be implemented 

with a minimum increase in the computational cost. 

Several low cost step size adjustment criteria can be 

found in the literature. Among them, the most promising 

ones are based on the instantaneous square error [6,7], on 

signal changes of successive gradient estimations [8] and on 

the correlation between input and error signals [9,10]. 

However, experimental results show that the steady-state 

performance provided by these techniques can be highly 

dependent on the measurement noise power level. This high 

sensitivity can be explained by a residual steady-state term 

in the step size update equation that is proportional to the 

noise power. As a result, these algorithms tend to provide 

poor performance for low signal to noise ratios (SNR). A 

practical example occurs in network echo cancellation 

subjected to severe double-talking [2,7]. To overcome this 

problem, a double-talking detector must be used to stop the 

adaptation process in low SNR situations.  

The variable step size (VSS) algorithm developed by 

Kwong and Johnston [6] provided an interesting strategy for 

LMS step size adjustment. Later on, authors of alternative 

variable step size algorithms have claimed a better 

performance than VSS [7,11]. More recently, the work in 

[12] demonstrated that VSS provides the step size sequence 

that is the closest to the optimum sequence when adequately 

designed. This result revived the interest in VSS. So far, 

VSS appears to lead to the best results in terms of 

convergence speed and misadjustment, even considering its 

intrinsic large sensitivity to the noise power. 

This work proposes a modified version of the VSS 

algorithm that is less sensitive to the measurement noise, at 

the price of a small increase in computational cost. The new 

algorithm is called Robust Variable Step Size (RVSS). 

Section 2 presents a brief review of the VSS algorithm. 

Section 3 introduces the RVSS algorithm and provides an 

analysis of its mean behavior. Section 4 compares the 

performances of VSS and RVSS for correlated and white 

signals. Section 5 presents simulations that corroborate the 

main theoretical results. Finally, Section 6 presents the main 

conclusions. 

2. THE VSS ALGORITHM 

The basic adaptive system block diagram is shown in Fig. 1. 

Here, n is the discrete time, x(n) is the input signal, zero 

mean, Gaussian with power rx. d(n) is the desired signal, 

y(n) is the output of the adaptive filter, e(n) is the error 
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signal and z(n) is the measurement noise, independent of 

x(n) and with power rz. w(n) = [ w0(n) w1(n) wN-1(n) ]T is 

the adaptive weight vector and wo = [ wo
0 wo

1 wo
N-1 ]

T is 

the impulse response of the unknown system. The error 

signal is given by 
Te n z n n nv x (1)

where x(n) = [ x(n) x(n-1) x(n-N+1) ]T is the input signal 

vector and v(n)=w(n)-wo is the weight error vector (v(n) = [ 

v0(n) v1(n) vN-1(n) ]T).

The VSS step size update equation is given by the 

following recursive equation [6] 
21VSS VSS VSS VSSn n e n (2)

where VSS and VSS are the control parameters. At each 

iteration, the result of (2) is bounded by predefined limits 

[ MIN, MAX] in order to prevent unstable behavior and to 

maintain the tracking capability. 

Fig. 1. Adaptive system. 

2.1. Mean Behavior of the VSS 

The mean behavior of the VSS is given by [6, Eq.(11),(15)] 

1 T

VSS VSS VSS VSS VSS zE n E n n rk (3)

where E{ } means statistical expectation. =diag{ },

k (n)=diag{Q
TE{v(n)vT(n)}Q} and  and Q are 

respectively the eigenvalue and eigenvector matrixes of the 

input signal correlation matrix (Rxx=E{x(n)x T(n) }=Q Q
T).

diag{A} is a vector containing the main diagonal elements 

of matrix A. The second order moments of the weight error 

vector depend on the chosen adaptive algorithm. 

Eq. (3) was derived assuming statistical independence 

between the variable step size and the input signal. This 

assumption is only valid for slow adaptation. The 

measurement noise is assumed white. 

3. RVSS UPDATE EQUATION AND ANALYSIS 

The measurement noise influences the VSS behavior 

through the two last terms in the r.h.s. of (3). The first term 

(from left to right) is determined by the misadjustment of 

the adaptive algorithm. Practical adaptive filters are 

designed for small steady-state misadjustment. Thus, this 

term is not the main performance degradation factor. The 

rightmost term is proportional to the measurement noise 

power, which is independent of the adaptation process. This 

term can be reduced if (2) is modified to 

21  1Tn n k n n e nx x (4)

where k,  and  are the control parameters. The effect of 

this modification on the algorithm behavior will become 

apparent after the analysis in the next subsection. 

Comparing the computational complexities of (2) and 

(4), the latter requires only two extra multiplications and 

three extra additions per iteration, assuming that xT(n)x(n) is 

evaluated recursively. For normalized algorithms such as 

NLMS (which already requires the evaluation of xT(n)x(n)),

the computational cost increases only by one multiplication 

and one addition. 

3.1. Mean Behavior of the RVSS 

The design of the RVSS algorithm (4) requires the 

determination of the parameter k in order to compensate for 

the influence of the measurement noise in the mean step size 

behavior. Taking the expectation of (4) we obtain 

2

2

1

T

E n E n E e n

k E n n e nx x

(5)

where two expected values must be evaluated. The first one 

can be found in [6, Eq.(15)]: 

2

zE e tr rn nxR K (6)

The second expected value can be evaluated using the 

Gaussian moment factoring theorem [1], resulting in: 
2

2

   

   2

   

   2  

T

T T T

T T

T

x x z

E e n n n

E n n n n n n

E n n n n

E z n n n

tr n r N tr n r Nrx x x

x x

v x x x x v

v x x x

x x

R R K R K

(7)

Substituting (6) and (7) in (5) leads to 

1 2  

1 1 zx x

E n E n k tr n

tr n rkr N kr N

K

K

(8)

which can be expressed in vector form as 

21 2  

1 1

T

T

zx x

E n E n k n

n rkr N kr N

k

k
(9)

where 2=diag{ }.

3.2. Compensation of the Noise Influence 

Examination of (9) shows that the last term in the r.h.s. is 

the main responsible for the effect of the noise power on the 

Adaptive

Filter

w(n)
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System 
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d(n)y(n)
Measurement 
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mean step size behavior. Differently from VSS, this effect 

can be minimized for RVSS through the appropriate choice 

of the free control parameter k. Assuming 

1 xk r N (10)

and using (10) in (9) we obtain 

2

2
1 T

x

E n E n n
r N

k (11)

In nonstationary applications, the parameter k can be 

periodically estimated. For white input signals, (11) 

simplifies to 

1

0

2
1

N
x

i

i

r
E n E n k n

N
(12)

Eqs. (11) and (12) demonstrate that the proposed 

strategy is able to cancel the direct influence of the 

measurement noise power on the mean behavior of the 

RVSS algorithm. 

4. COMPARISON BETWEEN VSS AND RVSS 

For simplicity of analysis, assuming = VSS e =N VSS/2 in 

(3) and (11), we obtain 
21

0

1

0

1

1

N
i

VSS VSS i

i x

N

VSS VSS VSS VSS i i VSS z

i

E n E n k n
r

E n E n k n r

Comparing Eqs. (13a) (RVSS) and (13b) (VSS), notice 

that there is no direct power noise influence in the RVSS 

update (13a). This property confers to RVSS its extra 

robustness to the measurement noise power. 

Assuming white input signals (13) can be expressed in 

closed form as 

1 1

0 0

1 1

0 0

0

0

          1
1

n N
jn n

VSS VSS x VSS i
i j VSS

n N
jn n

VSS VSS VSS VSS x VSS i
i j VSS

n VSS

VSS z

VSS

k i
E rn

k i
E rn

r

(14a)

(14b)

From (14a) and (14b), it is clear that RVSS has the 

same performance as VSS with rz=0.

5. SIMULATIONS 

In order to illustrate the characteristics and properties of the 

new algorithm three comparative simulations are presented 

between the VSS and RVSS. 

Example 1: NLMS algorithm, white Gaussian input 

signal and low SNR  Input signal with unitary power rx=1.

White measurement noise with power rz=0.15. w
o=[2.8 2.8 

2.8 2.8]T; VSS=0.995; VSS=0.01; = VSS; =N VSS/2; 

[ MIN, MAX]=(0,1] (maximum and minimum allowed step 

sizes). w(0)=[0 0 0 0]T
VSS(0)= (0)=0.8; 10000 runs. 

Example 2: NLMS algorithm, white Gaussian input 

signal and measurement noise with abrupt power variation 

 Input signal with unitary power. White noise with rz=10-8.

w
o=[0.17 0.5 0.7 0.5 0.17]T; VSS =0.99; VSS=0.01; = VSS , 

=N VSS/2; [ MIN, MAX]=[0,1]. w(0)=[0 0 0 0 0]T.

VSS(0)= (0)=0.1; 10000 runs. At sample 3000 the 

amplitude of the measurement noise is multiplied by 7000. 

Example 3: NLMS algorithm, correlated Gaussian 

input signal and medium SNR  Same conditions of 

Example 2 but with rz=10-2. Input signal generated by a 

second order autoregressive filter (x(n)=a1x(n-1)+a2x(n-

2)+u(n)) with a1=-0.3, a2=0.8 and ru=0.35 (input power to 

the model). 

Figs. 2 to 4 show the mean square excess error (n) = 

E{[e(n)-z(n)]2} for Examples 1 to 3. Fig. 5 presents the step 

size evolution for Example 3.

Fig. 2. Mean square excess error for Example 1. 

Comparisons between (a) VSS and (b) RVSS simulations. 

Fig. 3. Mean square excess error for Example 2. 

Comparisons between (a) VSS and (b) RVSS simulations. 

(13a)

(13b)

III ­ 95



Fig. 4. Mean square excess error for Example 3. 

Comparisons between (a) VSS and (b) RVSS simulations. 

Fig. 5. Step-size evolution for Example 3. Comparisons 

between (a) VSS and (b) RVSS simulations. 

These examples illustrate the ability of the RVSS 

algorithm to achieve high cancellation levels due to its low 

sensitivity to the measurement noise power. The 

improvement in the excess error is about 10 dB for Example 

1 and 2.5 dB for Example 3. This difference can be 

explained by the difference in the SNR ratios (8.2 dB and 

20 dB for Examples 1 and 3 respectively). The steady-state 

performance improvement of RVSS over VSS increases as 

the SNR gets smaller. 

Fig. 3 demonstrates that the VSS original recovery 

ability for abrupt changes is retained by the RVSS. Note the 

RVSS had not achieved steady-state conditions before the 

nonstationary event. 

Figs. 4 and 5 show that the main conclusions reached 

for white input signals are valid also for correlated inputs. 

The simulation results are in agreement with the theory, 

which can be used to explain the good properties of the new 

algorithm. 

6. CONCLUSIONS 

This work presented a new variable step size algorithm 

based on the original contribution of Kwong and Johnston’s 

algorithm (VSS). Analysis has demonstrated that the new 

algorithm is less sensitive to the power of the measurement 

noise when compared to VSS, at the price of a very small 

increase in the computational cost. For white Gaussian input 

signals the RVSS algorithm presents the same performance 

than the original VSS algorithm in a noise free environment. 

Monte Carlo simulations illustrated the validity of the 

theoretical results. The RVSS algorithm is especially 

attractive for applications with low SNR. 
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