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ABSTRACT

The cubic phase function (CPF) is recently proposed to 

estimate the instantaneous frequency rate (IFR) for the 

polynomial phase signals (PPS) in a Gaussian noise 

environment. However, for an impulse noise environment, 

the performance of the standard CPF degrades significantly. 

In addition, the resulting noise in the CPF is a mixture of the 

Gaussian and impulse noise even for a Gaussian input noise. 

Hence, a modified robust CPF algorithm based on the -

trimmed form of L-estimation is proposed in this paper. 

Extension to the robust higher-order phase function (HPF) 

is also derived. Simulation results demonstrate that the 

robust CPF outperforms the standard CPF in impulse noise 

and is also valid to estimate the IFR in Gaussian noise.  

1. INTRODUCTION 

Numerous signals used in technological applications, such 

as radar, sonar and communications, can be modeled as 

polynomial phase signals (PPS) with constant or slowly 

time-varying amplitude. Many techniques have been 

proposed for estimating parameters in this kind of signals. 

These methods can be categorized as nonparametric and 

parametric estimations. The first type consists of the time-

frequency distributions (TFDs) [1,2], which display the 

signal over a jointly time-frequency plane. Among these 

TFDs, the Wigner-Ville distribution (WVD) and the 

polynomial WVD (PWVD) [3] have received much 

attention due to the excellent concentrations along the 

instantaneous frequency (IF) of a signal. The parametric 

approaches may be divided into the maximum likelihood 

estimation (MLE) [4] and the methods based on rank 

reduction. The direct implementation of the MLE for high-

order PPS requires extensive computation. In contrast, the 

rank reduction has been associated with the polynomial 

phase transform (PPT) [5], the product high-order 

ambiguity function (PHAF) [6], the integrated generalized 

ambiguity function (IGAF) [7], the method based on the 

stationary higher-order moments [8] for computational 

implementation. Recently, a bilinear transform named as 

cubic phase function (CPF) [9] has been proposed to reveal 

the instantaneous frequency rate (IFR) of the PPS with 

order is not exceeding 3. For higher-order PPS, the higher-

order phase function (HPF) from CPF is derived in the same 

way as the PWVD from the WVD.  

The above mentioned methods are effective in the 

Gaussian noise environment. However, the assumption of 

Gaussian distribution of the input noise is not valid in some 

areas. For instance, the natural (from atmosphere or 

underwater phenomena) and the man-made disturbances 

have impulse characteristics with heavy-tailed distributions. 

For this kind of noise, the standard transform or time-

frequency distributions fail to produce accurate results. 

Therefore, various robust forms of the unitary transforms 

and TFDs have been proposed in [10-13]. These robust 

estimators are based on the M-estimation [10,11] and the L-

estimation, respectively [12,13].  

In this paper, we develop robust forms of the CPF that 

are able to produce accurate IFR estimation for additive 

impulse noise environment. In particular, the -trimmed 

form is proposed. The standard and median-based CPF can 

be treated as special cases of the -trimmed form. For 

higher-order phase signal, the robust HPF is also discussed. 

The rest of this paper is organized as follows. In 

Section 2, a brief review of the CPF is provided. The robust 

forms of CPF/HPF as IFR estimation tools for the impulse 

noise environment are developed in Section 3. Section 4 

presents the simulation results that validate the proposed 

robust estimator. Some discussions are provided in Section 

5. Concluding remarks are given in Section 6. 

2. THE CUBIC PHASE FUNCTION 

The CPF is defined as a two-dimensional (2-D) bilinear 

transform efficient for estimating the IFR [9]. Estimation of 

the IFR can be used as an initial step in estimating other 

phase parameters. The IFR of a signal ( )s n  with phase 

( )n is defined as  
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The discrete CPF for a signal ( )s n  is given by  
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where . Obviously, the CPF 

achieves maxima along the IFR 2 3 . By exploiting 

the dependence of IFR on time, an algorithm for parameter 

estimation for PPS signals with order is 3 is proposed in [9]. 

This algorithm is able to estimate other parameters using 

two slices of CPF. The selection of time positions is also 

discussed:  is used to reduce the variance of the third- 

and second-order phase coefficients and  is used 

to lower the mean-square error (MSE) of the third-order 

phase coefficient.
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3. THE ROBUST CUBIC PHASE FUNCTION 

In this section, the robust CPF is proposed in order to 

perform the IFR estimation for impulse noise environments. 

The M- and L-estimation based forms of the robust CPF are 

developed.  

3.1. M-estimation of CPF 

Katkovnik first introduced the M-periodogram [10] based 

on the optimization of the loss function ( )F e e . Since 

this type of function does not produce a closed-form 

solution, the iterative procedure approach is used. In [11], 

the median filter approach was proposed without iterative 

procedures. In particular, the vector median and marginal 

median filters are implemented. Both approaches have 

similar performance. However, since the marginal median 

filter requires less calculation it is preferred in most 

practical applications.

Direct application of marginal median filter to the CPF 

yields:  

2

2

( , )

median{Re{ ( ) ( )exp( 2 )}: }

median{Im{ ( ) ( )exp( 2 )}: }.

MCPF n

x n m x n m j m m

j x n m x n m j m m

(5)

It is worthy noting that the median-based CPF can 

introduce the spectral distortion effect, since only two 

modulated samples are used. Moreover, for a Gaussian 

input noise, resulting noise in CPF is inherently a mixture of 

Gaussian and impulse noise, due to bilinear nature [13]. In 

this case, the L-estimation based CPF can produce better 

results with respect to the M-estimation based CPF. Hence, 

the L-estimation based CPF is proposed in the next 

subsection, to estimate the IFR for a signal embedded in an 

impulse or a mixture of Gaussian and impulse noise. 

3.2. L-estimation of CPF 

By analogy with the L-estimation based TFDs [13] of 

complex-valued signal, the L-estimation based CPF can be 

defined as 

0 0

( , ) Re{ ( , )} Im{ ( , )}

( , ) ( , )

L L L
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where 0 1N
ii a , ( , )iR n and are the values 

from the sets:
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coefficients , for odd , are given by  ia N
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where 0 0.5 . Note that the standard form and median-

based form of CPF can be obtained as special cases of (7) 

with =0 and =0.5, respectively. 

1) The standard CPF is derived from (7) with 

,1/ia N [0, ]i N .

2)   The median-based CPF follows from (7) with 

1, ( 1) / 2

( 1) / 2
i

i N
a

i N
, for odd .             (8) N

3.3  Extension to robust higher-order phase function 

In [9], the CPF is extended to estimate the IFR of the PPS 

with order is exceeding 3. It can be defined in the discrete 

form as  

2( , ) ( , ) exp( )P
mhLHPF n K n m j m (9)

where P  is the order of the signal phase, 

1 , and the 

operator

( , ) [ ( ) ( ) ]
ii

rkP N
i iiK n m x n c m x n c m ik

ir indicates conjugation of  iff 1ir . The 

parameters , ,  and  are selected to yield unbiased ic ik ir N
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IFR estimates for a phase polynomial of order P  in the 

same way that similar parameters were chosen to give 

unbiased estimates of the IF in [3].  

Therefore, the robust L-estimation based form of HPF 

can be defined similarly as the robust CPF: 

0 0

Re{ ( , )} Im{ ( , )}

)

n( , )

( , ) ( ,

hL hL hL

N N
i ii hi i hi

n j

j
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, (10) 

where  and  are the values from the 

sets:

( , )hi nR ( , )hi nI
2{Re{ ( , ) exp( )} : }P

hiR K n m j m m and
2{Im{ ( , ) exp( )} : }P

hiI K n m j m m , respectively, 

sorted into the non-increasing sequences. The coefficient 

, for odd , are given by (7). ia N

3.4  IFR estimation 

For a noise-free PPS observation, the energy of the 

CPF/HPF concentrates along the IFR of the signal. Also, the 

peaks of the CPF/HPF yield unbiased estimate of the IFR. 

For a noisy PPS, the peaks of the standard CPF/HPF are 

sensitive to the impulse noise, whereas the robust estimators 

given by (6) and (10) have better performance in the 

impulse noise environment. Hence, it is possible to estimate 

the IFR from the peaks of the robust CPF/HPF. According 

to (1), the IFR is the second derivative of the phase. The 

IFR estimation is given as 

( ( , ) )arg , 3

( )
( ( , ) )arg , 3

max

max

L

hL

CPF n p

n
HPF n p

. (11)

Thus, the IFR at any time point can be obtained by using the 

argument that maximizes the magnitude of the robust 

CPF/HPF.

4. SIMULATIONS 

Performances of the robust CPF both in the Gaussian and 

impulse noise are considered in this section. The noiseless 

signal is generated by (3) and the parameters are chosen to 

be 1A , , 10 1a / 5a , 2 , ,

and . Sampling rate is 1. A mixture of Gaussian 

and impulse noise corrupts the noiseless signal:  

/ 5a N 2
3 / 8a N

515N

3

1( ) ( ) ( ) ( ) 2x n s n v n s n v v            (12) 

where iv , , are mutually independent complex white 

Gaussian noises with zero mean and unit variance, while 

1, 2i

 and  are the parameters to control the noise 

distribution. 

Example 1 compares the performances of the standard 

and robust CPF under different noise distributions. Three 

kinds of distributions are considered, while  is fixed to 

0.4. The first one is the white Gaussian input noise with 

0 , the second is a mixture of Gaussian and impulse 

noise with 0.4 , and the last is the mixed noise with 

0.8 . The results are shown in Fig. 1. It can be 

concluded that the standard CPF is valid for estimation only 

in small Gaussian input noise whereas the robust form is 

able to present the peaks in all three considered noise 

environments. 

Fig.1.   The standard and robust CPF (at the middle of time) of the signal 

in a mixture of the Gaussian and impulse noise. Top ro 0.4, 0 ;

Middle row 0.4, 0.4 ; Bottom ro 0.4, 0.8 .

Fig.2.    MSEs of IFR estimates (at the middle of time) based on the 

standard CPF and robust CPF with different ( 0.2 ).

Example 2 evaluates the performance of the standard 

form and robust forms of CPF. The IFR at 0n

(corresponding to the IFR: 0.00122 Hz/s) is estimated 

according to (10) with 100 Monte-Carlo runs for each value 

of  in the cases of 0.2 . The estimated MSEs are 

plotted in Fig.2. From this figure, it can be concluded that, 

the standard CPF is slightly better than the robust CPF for 

small impulse noise, whereas with an increase of , the 
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median and two -trimmed forms of the CPF are more 

insensitive to the impulse noise than the standard CPF. It is 

also shown that, for 0.2 0.6 , the robust CPF with 

small  has the best performance among three robust 

estimators, while the median-based estimator has better 

performance than the other two -trimmed mean estimators 

for 0.6  in Fig.2. 

5. DISCUSSION 

From Example 2, the -trimmed mean-based robust CPF 

(including the standard and median-based CPF) has 

different performance in different noise distributions. Hence, 

it is better to adaptively choose the appropriate coefficient 

 for minimizing the MSEs. An approach for automatic 

selection of the coefficient  can be found in [13].  

In [14], the ML estimator in compound-Gaussian 

clutter is proposed for chirp signal. This technique can be 

extended for high-order PPS. However, it requires 

multidimensional grid search, leading to extensive 

computation and nonlinear programming. As to the bilinear 

transform exploiting the second-order cyclostationary, it can 

be efficiently implemented, but its application has not been 

developed for higher-order PPS, yet. Moreover, the robust 

CPF/HPF uses the estimated IFR to estimate the phase 

parameters simultaneously, that remarkably reduces the 

error propagation.  

6. CONCLUSION 

In this paper, the limitation of the standard CPF for impulse 

noise is pointed out. We considered the -trimmed mean 

form of the robust CPF, which can produce better results 

than the M-estimation form since resulting noise in bilinear 

CPF is mixture of Gaussian and impulse noise when the 

input noise is Gaussian. Also, the extension to the robust 

HPF is discussed. Finally, the performances of the robust 

estimators have been evaluated using Monte-Carlo 

experiments. The results show that the L-estimation of CPF 

is more robust to the impulse noise influence than the 

standard CPF whereas the standard CPF is slightly better 

than the robust CPF for Gaussian noise or small impulse 

noise environment. 
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