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ABSTRACT

We consider the problem of jointly estimating the number as
well as the parameters of two-dimensional sinusoidal signals, ob-
served in the presence of an additive colored noise field. In this
framework we consider the problem of least squares estimation
of the parameters of 2-D sinusoidal signals observed in the pres-
ence of an additive noise field, when the assumed number of si-
nusoids is incorrect. In the case where the number of sinusoidal
signals is under-estimated we show the almost sure convergence
of the least squares estimates to the parameters of the dominant
sinusoids. In the case where the number of sinusoidal signals is
over-estimated, the estimated parameter vector obtained by the
least squares estimator contains a sub-vector that converges al-
most surely to the correct parameters of the sinusoids. Based on
these results, we prove the strong consistency of a large family of
model order selection rules.

1. INTRODUCTION

We consider the problem of jointly estimating the number as well
as the parameters of two-dimensional sinusoidal signals, observed
in the presence of an additive noise field. This problem is, in fact, a
special case of a much more general problem: From the 2-D Wold-
like decomposition we have that any 2-D regular and homogeneous
discrete random field can be represented as a sum of two mutually
orthogonal components: a purely-indeterministic field and a deter-
ministic one. In this paper we consider the special case where the
deterministic component consists of a finite (unknown) number of
sinusoidal components, while the purely-indeterministic component
is assumed to be a colored infinite order non-symmetric half plane,
or quarter-plane, moving average noise field.

Many algorithms have been devised to estimate the parameters
of sinusoids observed in additive colored noise. Most of these as-
sume the number of sinusoids is a-priori known. However this as-
sumption does not always hold in practice. In the past three decades
the problem of model order selection for 1-D signals has received
considerable attention. In general, model order selection rules are
based (directly or indirectly) on three popular criteria: Akaike infor-
mation criterion (AIC), the minimum description length (MDL), and
the maximum a-posteriori probability criterion (MAP). All these cri-
teria have a common form composed of two terms: a data term and
a penalty term, where the data term is the log-likelihood function
evaluated for the assumed model.

Most of the papers that address the problem of model order se-
lection are concerned with various models of one-dimensional sig-
nals, while the problem of modelling multidimensional fields has
received considerably less attention. In [2], a maximum a-posteriori

(MAP) model order selection criterion for jointly estimating the num-
ber and the parameters of two-dimensional sinusoids observed in the
presence of an additive white Gaussian noise field, is derived. In [3],
we proved the strong consistency of a large family of model order se-
lection rules, which includes the MAP based rule in [2] as a special
case.

In this paper we extend the results of [3] to the case were the
additive noise is colored and have infinite order non-symmetric half-
plane or quarter-plane moving average representation.

2. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

Let {y(n, m)} be a real valued field,

y(n, m) =

P�

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n, m), (1)

where 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1 and for each i, ρ0
i is

non-zero. Due to physical considerations it is further assumed that
for each i, |ρ0

i | is bounded .
Recall that the non-symmetrical half-plan total-order is defined

by

(i, j) � (s, t) iff

(i, j) ∈ {(k, l)|k = s, l ≥ t} ∪ {(k, l)|k > s,−∞ ≤ l ≤ ∞} (2)

We make the following assumptions:
Assumption 1: The stationary noise field {w(n, m)} can be

represented by an infinite order non-symmetric half-plane MA noise
field, i.e.,

w(n, m) =
�

(r,s)�(0,0)

a(r, s)u(n − r, m − s) (3)

where the field {u(n, m)} is an i.i.d. real valued zero-mean random
field with finite second order moment, σ2, and satisfy the condition
E[|u(0, 0)|α] < ∞ for some α > 3 .The sequence a(i, j) is an
absolutely summable deterministic sequence with

�

(r,s)�(0,0)

|a(r, s)| < ∞. (4)

Let fw(ω, υ) denote the spectral density function of the noise
field {w(n, m)}. Hence,

fw(ω, υ) = σ2

����
�

(r,s)�(0,0)

a(r, s)ej(ωr+υs)

����
2

(5)

III ­ 851­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



Assumption 2: The spatial frequencies (ω0
i , υ0

i ) ∈ (0, 2π) ×
(0, 2π), 1 ≤ i ≤ P are pairwise different. In other words, ω0

i �= ω0
j

or υ0
i �= υ0

j , when i �= j.
Let {Ψi} be a sequence of rectangles such that Ψi = {(n, m) ∈

Z2 | 0 ≤ n ≤ Ni − 1, 0 ≤ m ≤ Mi − 1}.
Definition 1: The sequence of subsets {Ψi} is said to tend to

infinity (we adopt the notation Ψi → ∞) as i → ∞ if

lim
i→∞

min(Ni, Mi) = ∞

and
0 < lim

i→∞
(Ni/Mi) < ∞.

To simplify notations, we shall omit in the following the subscript i.
Thus, the notation Ψ(N, M) → ∞ implies that both N and M tend
to infinity as functions of i, and at roughly the same rate.

Definition 2: Let Θk be a bounded and closed subset of the
4k dimensional space Rk × ((0, 2π) × (0, 2π))k × [0, 2π)k where
for any vector θk = (ρ1, ω1, υ1, ϕ1, . . . , ρk, ωk, υk, ϕk) ∈ Θk the
coordinate ρi is non-zero and bounded for every 1 ≤ i ≤ k while
the pairs (ωi, υi) are pairwise different, so that no two regressors
coincide. We shall refer to Θk as the parameter space.

From the model definition (1) and the above assumptions it is
clear that θ0

k = (ρ0
1, ω

0
1 , υ0

1 , ϕ0
1, . . . , ρ

0
k, ω0

k, υ0
k, ϕ0

k) ∈ Θk.
Define the loss function due to the error of the k-th order regres-

sion model

Lk(θk) =
1

NM

N−1�
n=0

M−1�
m=0

�
y(n, m)−

k�
i=1

ρ0
i cos(ω0

i n+υ0
i m+ϕ0

i )

�2

.

(6)
A vector θ̂k ∈ Θk that minimizes Lk(θk) is called the Least

Square Estimate (LSE). In the case where k = P , the LSE is a
strongly consistent estimator of θ0

P (see, e.g., [5] and the references
therein).

3. STRONG CONSISTENCY OF THE OVER- AND
UNDER-DETERMINED LSE

In the following, we establish the strong consistency of the above
LSE when the number of sinusoids is under-estimated, or over-estimated.
Detailed proofs can be found in [4].

The first theorem establishes the strong consistency of the least
squares estimator in the case where the number of the regressors is
lower than the actual number of sinusoids. Let k denote the assumed
number of observed 2-D sinusoids, where k < P . To formulate the
main result of this section, we shall need an additional assumption:

Assumption 3: For convenience, and without loss of generality,
we assume that the sinusoids are indexed according to a descending
order of their amplitudes, i.e.,

ρ0
1 ≥ ρ0

2 ≥ . . . ρ0
k > ρ0

k+1 . . . ≥ ρ0
P > 0 , (7)

where we assume that for a given k, ρ0
k > ρ0

k+1 to avoid trivial am-
biguities resulting from the case where the k-th dominant component
is not unique.

Theorem 1 Let Assumptions 1-3 be satisfied. Then, the k-regressors
parameter vector

θ̂k = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂k, ω̂k, υ̂k, ϕ̂k)

that minimizes (6) is a strongly consistent estimator of

θ0
k = (ρ0

1, ω
0
1 , υ0

1 , ϕ0
1, . . . , ρ

0
k, ω0

k, υ0
k, ϕ0

k)

as Ψ(N, M) → ∞. That is,

θ̂k → θ0
k, a.s. as Ψ(N, M) → ∞. (8)

Proof: See [4] for a detailed proof.
The second theorem establishes the strong consistency of the

least squares estimator in the case where the number of the regres-
sors is higher than the actual number of sinusoids. Let k denote the
assumed number of observed 2-D sinusoids, where k > P . Without
loss of generality, we can assume that k = P + 1, (as the proof for
k ≥ P + 1 follows immediately by repeating the same arguments).
Let the periodogram (scaled by a factor of 2) of the field {w(n, m)}
be given by

Iw(ω, υ) =
2

NM

�����
N−1�
n=0

M−1�
m=0

w(n, m)e−j(nω+mυ)

�����
2

. (9)

The parameter space ΘP , ΘP+1 are defined as in Definition 2.

Theorem 2 Let Assumptions 1-2 be satisfied. Then, the parameter
vector

θ̂P+1 = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . ,

ρ̂P , ω̂P , υ̂P , ϕ̂P , ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1) ∈ ΘP+1

that minimizes (6) with k = P + 1 regressors as Ψ(N, M) → ∞ is
composed of the vector θ̂P = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P )
which is a strongly consistent estimator of

θ0
P = (ρ0

1, ω
0
1 , υ0

1 , ϕ0
1, . . . , ρ

0
P , ω0

P , υ0
P , ϕ0

P )

as Ψ(N, M) → ∞; of the pair of spatial frequencies (ω̂P+1, υ̂P+1)
that maximizes the periodogram of the observed realization of the
field {w(n, m)}, i.e.,

(ω̂P+1, υ̂P+1) = arg max
(ω,υ)∈(0,2π)2

Iw(ω, υ) (10)

and of the element ρ̂P+1 that satisfies

ρ̂2
P+1 =

2

NM
Iw(ω̂P+1, υ̂P+1) . (11)

Proof: See [4] for a detailed proof.
In the above theorems, we have considered the problem of least

squares estimation of the parameters of 2-D sinusoidal signals ob-
served in the presence of an additive colored noise field, when the
assumed number of sinusoids is incorrect. In the case where the
number of sinusoidal signals is under-estimated we have established
the almost sure convergence of the least squares estimates to the pa-
rameters of the dominant sinusoids. This result can be intuitively ex-
plained using the basic principles of least squares estimation: Since
the least squares estimate is the set of model parameters that min-
imizes the 	2 norm of the error between the observations and the
assumed model, it follows that in the case where the model order
is under-estimated the minimum error norm is achieved when the k
most dominant sinusoids are correctly estimated. Similarly, in the
case where the number of sinusoidal signals is over-estimated, the
estimated parameter vector obtained by the least squares estimator
contains a 4P -dimensional sub-vector that converges almost surely
to the correct parameters of the sinusoids, while the remaining k−P
components assumed to exist, are assigned to the k − P most domi-
nant spectral peaks of the noise power to further minimize the norm
of the estimation error.
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4. STRONG CONSISTENCY OF A FAMILY OF MODEL
ORDER SELECTION RULES

In this section we employ the results derived in the previous section
in order to establish the strong consistency of a large family of model
order selection rules.

It is assumed that there are Q competing models, where Q >
P and finite., and that each model is equiprobable. Following the
MDL-MAP template, define the statistic

χξ(k) = NM logLk(θ̂k) + ξk log NM, (12)

where ξ is some finite constant to be specified later,
k ∈ {0, 1, 2, . . . , Q − 1} and Lk(θ̂k) is the minimal value of the
error variance of the least square estimator.

The number of 2-D sinusoids is estimated by minimizing χξ(k)
over k ∈ {0, 1, 2, . . . , Q − 1}, i.e.,

P̂ = arg min
k∈ZQ

�
χξ(k)

�
(13)

Let

A :=

�
(r,s)�(0,0)

�
(q,t)�(0,0) |a(r, s)a(q, t)|�

(r,s)�(0,0) a2(r, s)
(14)

The objective of the next theorem is to prove the asymptotic
consistency of the model order selection procedure in (13).

Theorem 3 Let Assumptions 1-2 be satisfied. Let P̂ be given by (13)
with ξ > 14A. Then as Ψ(N, M) → ∞

P̂ → P a.s. (15)

Proof:
For k ≤ P ,

χξ(k − 1) − χξ(k)

= NM logLk−1(θ̂k−1) + ξ(k − 1) log NM

−NM logLk(θ̂k) − ξk log NM

= NM log

�Lk−1(θ̂k−1)

Lk(θ̂k)

�
− ξ log NM (16)

From Theorem 1 as Ψ(N, M) → ∞

θ̂k → θ0
k a.s. (17)

and
θ̂k−1 → θ0

k−1 a.s. (18)

From the definition of Lk(θ̂k), as Ψ(N, M) → ∞

Lk(θ̂k) = 1
NM

N−1�
n=0

M−1�
m=0

�
y(n, m) −

k�
i=1

ρ̂i cos(ω̂in + υ̂im + ϕ̂i)

�2

= 1
NM

N−1�
n=0

M−1�
m=0

�
P�

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n, m)

−
k�

i=1

ρ̂i cos(ω̂in + υ̂im + ϕ̂i)

�2

→ 1
NM

N−1�
n=0

M−1�
m=0

�
P�

i=k+1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n, m)

�2

.

(19)

Recall that for ω ∈ (0, 2π)

N−1�
n=0

cos(ωn + ϕ) = O(1) . (20)

From Lemma 3, [4] we know that as Ψ(N, M) → ∞

sup
ω,υ

�����
1

NM

N−1�
n=0

M−1�
m=0

w(n, m) cos(ωn + υm)

�����→ 0. a.s. (21)

Hence, from the SLLN, (20) and (21), we conclude that as Ψ(N, M) →
∞

Lk(θ̂k) → σ2
�

(r,s)�(0,0)

a2(r, s) +

P�
i=k+1

(ρ0
i )

2

2
a.s. (22)

and similarly

Lk−1(θ̂k−1) → σ2
�

(r,s)�(0,0)

a2(r, s) +

P�
i=k

(ρ0
i )

2

2
a.s. (23)

Since log NM
NM

tends to zero, as Ψ(N, M) → ∞, then as Ψ(N, M) →
∞

(NM)−1(χξ(k − 1) − χξ(k))

→ log

�
1 +

(ρ0
k)2

2σ2
�

(r,s)�(0,0) a2(r, s) +
�P

i=k+1(ρ
0
i )

2

�
a.s.(24)

Since log

�
1+

(ρ0
k)2

2σ2�
(r,s)�(0,0) a2(r,s)+

�P
i=k+1(ρ0

i )2

�
is strictly

positive, then χξ(k − 1) > χξ(k). Hence, for k ≤ P , the function
χξ(k) is monotonically decreasing with k.

We next consider the case where k = P +l for any integer l ≥ 1.
Based on [6], Theorem 1 and Assumption 1 we have that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 14 a.s. (25)

Based on an extension of Theorem 2 we have that a.s. as Ψ(N, M) →
∞

LP+l(θ̂P+l) = LP (θ̂P ) − Ul

NM
+ o

�
log NM

NM

�
(26)

where

Ul =

l�
i=1

Iw(ωi, υi) (27)

is the sum of the l largest elements of the periodogram of the noise
field {w(s, t)}. Clearly

Ul ≤ l sup
ω,υ

Iu(ω, υ) (28)
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Similarly to (16), a.s. as Ψ(N, M) → ∞,

χξ(P + l) − χξ(P )

= NM logLP+l(θ̂P+l) + ξ(P + l) log NM

−NM logLP (θ̂P ) − ξP log NM = ξl log NM

+NM log

�
1 − Ul

NMLP (θ̂P )
+ o

�
log NM

NM

��

= ξl log NM −
�

Ul

LP (θ̂P )
+ o(log NM)

�
(1 + o(1))

= log NM

�
ξl − Ul

LP (θ̂P ) log NM
+ o(1)

�

≥ log NM

�
ξl −

l sup
ω,υ

Iw(ω, υ)

LP (θ̂P ) log NM
+ o(1)

�

= l log NM

�
ξ −

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log NM

sup
ω,υ

fw(ω, υ)

LP (θ̂P )
+ o(1)

�

(29)

where the second equality is obtained by substituting LP+l(θ̂P+l)
using the equality (26). The third equality is due to the property that
for x → 0, log(1 + x) = x(1 + o(1)), where the observation that
the term Ul

NMLP (θ̂P )
tends to zero a.s. as Ψ(N, M) → ∞ is due to

(25).
From [5] (or using Theorem 1 in the previous section),

θ̂P → θ0
P a.s. as Ψ(N, M) → ∞. (30)

Hence, the strong consistency (30) of the LSE under the correct
model order assumption implies that as Ψ(N, M) → ∞

LP (θ̂P ) → σ2
�

(r,s)�(0,0)

a2(r, s) a.s. (31)

On the other hand using the triangle inequality

sup
ω,υ

fw(ω, υ) ≤ σ2
�

(r,s)�(0,0)

�
(q,t)�(0,0)

|a(r, s)a(q, t)| (32)

Substituting (25),(31) and (32) into (29) we conclude that

χξ(P + l) − χξ(P ) > 0 (33)

for any integer l ≥ 1. Therefore, a.s. as Ψ(N, M) → ∞, the
function χξ(k) has a global minimum for k = P .

5. SPECIAL CASE

Introducing some additional restrictions on the structure of the noise
field, we can establish a tighter (in terms of ξ) model order selection
rule. We thus modify Assumption 1 as follows:

Assumption 1’ The stationary noise field {w(n, m)} can be
represented by infinite order quarter-plane MA noise field, i.e.,

w(n, m) =

∞�
r,s=0

a(r, s)u(n − r, m − s) (34)

where the field {u(n, m)} is an i.i.d. real valued zero-mean random
field with finite second order moment, σ2and satisfy the condition

E[u(0, 0)2 log |u(0, 0)|] < ∞. The sequence a(i, j) is a determin-
istic sequence which satisfied the condition

∞�
r,s=0

(r + s)|a(r, s)| < ∞. (35)

In this case based on [1], Theorem 3.2 and Assumption 1’ we
have that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 8 a.s. (36)

The results of Theorem 1 and 2 are not affected by this assump-
tion (see [4]). The only change is in Theorem 3. Therefore we can
formulate the next theorem:

Theorem 4 Let Assumptions 1’ and 2 be satisfied. Let P̂ be given
by (13) with ξ > 8A. Then as Ψ(N, M) → ∞

P̂ → P a.s. (37)

The proof of this theorem is identical to the proof of Theorem 3,
where instead of (25) we employ the inequality in (36).

6. CONCLUSIONS

We have considered the problem of jointly estimating the number
as well as the parameters of two-dimensional sinusoidal signals, ob-
served in the presence of an additive colored noise field. We have
established the strong consistency of the LSE when the number of
sinusoidal signals is under-estimated, or over -estimated. Based on
these results, we have proved the strong consistency of a large family
of model order selection rules of the number of sinusoidal compo-
nents.
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