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ABSTRACT

Recently, Zarowski and Kmpyvnytskyy developed a modified

iterative cosinor algorithm (MICA) for the estimation of the

parameters of sinusoidal signals with harmonics and subhar-

monics contaminated by AWGN, and derived the Cramer-Rao

Lower Bound (CRLB) for the estimation of fundamental fre-

quency component of such signals. However, their deriva-

tion was based on the assumption that the noise variance is

known a priori. This paper presents a new derivation of CRLB

bound for the case that the noise variance is unknown. The

derivations also include the CRLB bounds for the estimation

of harmonic and subharmonic amplitudes, noise variance as

well as the SNR of the contaminated signal. Numerical sim-

ulation results are given to verify and interpret the derived

CRLB bounds, together with the evaluation of estimation per-

formance.

1. INTRODUCTION

Parameter estimation for multitone sinusoidal signals in noise

has been well reported in the hitherto literature. Typical tech-

niques include the maximum likelihood estimation (MLE) [1],

MUSIC [2], and subspace method [3]. However, in these

techniques, little attention has been paid to sinusoidal signals

with harmonics and subharmonics. In [1], the MLE approach

was applied to the general signals consisting of multiple si-

nusoids in noise under the assumption that there is no spe-

cial harmonic relationship between the constituent sinusoidal

components. Harmonic and subharmonic signal components

exist in many signal processing applications. For example,

in speech signal processing problems, many acoustic sources

such as rotating machinery have non-linear effects within the

generating system, and often give rise to harmonics and sub-

harmonics besides the fundamental component. To properly

characterize such signals, the harmonics and subharmonics

should be taken into account.

Recently, Zarowski and Kmpyvnytskyy [4] developed a

modified iterative cosinor algorithm (MICA) for the temper-

ature data containing circadian rhythms for head-injured pa-

tients. In the MICAmodel, the period of the circadian rhythm

for the patient, called the patient’s “tau” and denoted by is

to be estimated together with the harmonic and subharmonic

components of the data. In [4], the Cramer-Rao Lower Bound

(CRLB) for the estimation of the patient’s tau was derived but

it was assumed that the noise variance is known a priori. This

paper presents the derivation of CRLB bounds for the case

that the variance is unknown. The derivation also includes

the CRLB bounds for other parameters such as amplitudes of

harmonics and subharmonics, noise variance, and the signal

to noise ratio (SNR). Numerical simulation results are also

given to verify and interpret the CRLB bounds.

2. PROBLEM FORMULATION

Let us consider the MICA model for a circadian rhythm data

set { ( )} given by

( ) =
X
=1

[ cos( ) + sin( )]+

X
=2

[ cos( ) + sin ( )] + ( ) (1)

where = 0 1 · · · 1 and where represents the

length of the data set. Moreover, = 2 (0 )
( represents the sampling period), ,

and { ( )} represents a sequence of independent, identically
distributed additive white Gaussian noise (AWGN) random

variables with zero mean and an unknown variance of 2 Let

= [ 1 · · · 1 · · ·

2 · · · 2 · · · ] R (2)

represent the amplitude vector, and let

[ ; ] = [cos( ) · · · cos( ) sin( ) · · ·

sin( ) cos( 2) · · · cos( )

sin ( 2) · · · sin ( )] R (3)

represent the sinusoidal signal vector, where = 2( +
1) Then, (1) can be rewritten compactly as

( ) = [ ; ] + ( ) (4)

Moreover, let

=
£

2
¤
= [ 1 2 · · · +1 +2] (5)

III ­ 811­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



represent the parameter vector, where [ 1 2 · · · ] =

+1 = and +2 =
2 Then, the problem under consid-

eration amounts to estimating from the -point noisy data

= [ (0) (1) · · · ( 1)] R . The pdf of is

given by

( ; ) =
1

(2 2) 2
exp

(
1

2 2

1X
=0

£
( ) [ ; ]

¤2)
(6)

It is convenient to define the matrices

( ) = [ [0; ] [1; ] · · · [ 1; ]] R
×

( ) = ( ) ( ) R
× (7)

together with = R and ( ) = ( )1 R .

Consequently, (6) may be rewritten as a log likelihood func-

tion as2

ln ( ; ) = ln
1

(2 2) 2

1

2 2
( ) ( )

=
2
ln
¡
2 2

¢ 1

2 2

¡
2 +

¢
(8)

The data model developed above will be used for the deriva-

tion of the desired CRLB bounds.

3. THE DERIVATION OF CRLB BOUNDS

For the CRLB bounds to exist, the regularity condition

ln ( ; )
¸
= 0 (9)

must be satisfied [5]. By long but straightforward manipula-

tions, it can be shown that

ln ( ; )
¸
=
1
2

£ ¤
= 0 (10)

ln ( ; )
¸
=

"
1
2

1

2 2

#
= 0

(11)
ln ( ; )

( 2)

¸
=

2 2
+

1

2 ( 2)
2

£
2 +

¤
= 0 (12)

By combining (10)-(12), one can readily arrive at (9).

The Fisher information matrix (FIM) is defined as

( ) = { = 1 2 3}

1Here, is used in two different contexts, as a superscript to denote ma-

trix transposition, and as the signal period.
2In the following, signal dependence on is omitted from the notations

for the sake of simplicity, e.g. stands for ( ), for ( ), and for

( ), etc.

=

ln

ln

ln
2

µ
ln

¶
ln ln

2

¸

where

11 =

"
ln

µ
ln

¶ #

=
1
4

h¡ ¢ ¡ ¢ i
=
1
2

(13)

Similarly, by mathematical manipulations, one can get

12 =
1
2 22 =

1
2

21 = 12 31 = 13 = 0 32 = 23 = 0 33 =
2 4

Consequently, the FIM is obtained as

( ) =
1
2

0

0

0 0
2 2

Let the matrix be defined as

= 11 12

21 22

¸
=
1
2

(14)

Then, the CRLB bound is obtained as the inverse of FIM in

accordance with

1( ) =

1 0

0
2 4 (15)

where

1 =

" ¡
11 12

1
22 21

¢ 1
|¡

22 21
1

11 12

¢ 1

21
1

11 |

|
¡

11 12
1

22 21

¢ 1

12
1

22

|
¡

22 21
1

11 12

¢ 1

#

and where 11 and 22 are assumed to be invertible.

In this way, the CRLB bound on the variance of the unbi-

ased estimator of is given by

=
¡

22 21
1

11 12

¢ 1

= 2
h h ¡ ¢ 1

i i 1

(16)
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where = R and is a × identity matrix.

The structure of (16) has a geometric interpretation. From

[6], if for a matrix R
× where is of rank

then the matrix operator

=
¡ ¢ 1

R
× (17)

is an orthogonal projection matrix (i.e., it is idempotent3 and

symmetric). This implies that the vector R is projected

into the subspace of vector spaceR spanned by the columns

of under the operation .

In (16), let the matrix be defined as

=
¡ ¢ 1

R
× (18)

which is an orthogonal projection matrix. Then,

= 2
£ ¤ 1

= 2
h¡ ¢ i 1

(19)

In (19), R is a column vector of length . In this

way,
¡ ¢

can be considered as the energy of .

Therefore, is a ratio of the noise power 2 to the signal

power, i.e. it is the inverse of SNR. This implies that the

higher the SNR, the lower the CRLB bound.

The CRLB bounds on the estimation variances of other

parameters can be derived from (15). For the estimation ˆ of
the amplitude vector , the CRLB bound can be obtained as

=
¡

11 12
1

22 21

¢ 1

= 2

h h ¡ ¢ 1
i i 1

R
× (20)

The CRLB bound for the estimation of the noise power
2 is simply given by

=
2 4

(21)

Finally, one can also derive the CRLB bound for estimat-

ing the SNR of the data. According to [5], the CRLB bound

for an estimator = ( ) is given by

= 1 ( )

µ ¶
Here, the SNR for the MICA signal model is defined as the

ratio of the sum of fundamental frequency component power

to the noise power in accordance with

= ( ) =
2
1 +

2
1

2

Therefore, the CRLB bound for the SNR estimation is ob-

tained as

= 1( )

µ ¶
(22)

3A matrix operator is idempotent if 2 =

where

=
2 1

2
· · · 0| {z }

2 1

2
· · · 0| {z } 0 · · · 0| {z }

1

0 · · · 0| {z }
1

0
2
1

2
1

( 2)2

The above derived CRLB bounds are useful in estimating

how many data points need to be collected in order to achieve

a desired accuracy under various modelling conditions. The

derived CRLB bounds will be verified by computer simula-

tion in the next section.

4. THE SIMULATION RESULTS

In this section, the validity of the CRLB bounds in (16) and

(19)-(22) is confirmed through computer simulations. This is

achieved by the Monte Carlo simulations for the above para-

meters using MLE algorithm. The simulations are based on

= [1 0 2 0 05 0 01 1 0 2 0 05 0 01 4 6 4 6] in (2). The

data size is chosen as = 500, as during the simulations,
if the data size is too small (e.g. = 100), the condition
number of the matrix in (7) becomes very large, rendering

close to singular. This makes the estimation less accurate

or even unreliable. Therefore, a data size of 500 is used to

obtain the desired estimation accuracy. For each SNR point,

500 independent Monte Carlo simulations are made and the
results are averaged to arrive at an estimation.
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Fig. 1. The normalized standard deviation of the estimation

of 1 (top) and 1 (bottom) vervus SNRs together with the
CRLBs (solid curves).

The estimation variances for parameters 1, 1 are plot-
ted versus SNR (in dB) in Fig. 1, the estimation variance of
2 and are plotted in Fig. 2, and the estimation vari-

ance of is plotted in Fig. 3. It is observed that the simulated

variance approaches the CRLB bound as SNR increases (as
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Fig. 2. The normalized standard deviation of the estimation

of 2 (top) and (bottom) versus SNRs together with the

CRLBs (solid curves).
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Fig. 3. The normlized standard deviation of the estimation of

together with CRLB (solid curve).

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 SNR (dB)

N
or

m
al

iz
ed

 B
ia

s 

Normalized Bias of parameter estimation

Bias of A1
Bias of B1
Bias of T
Bias of SNR

Fig. 4. The estimation biases versus SNRs.

expected). Since CRLB bound is the theoretical limit on the

best possible unbiased estimation performance, no other esti-

mation method can be expected to perform better thanMLE at

high SNRs. With decreasing SNR, the estimation variance be-

comes worse than the bound (again, as expected). The simu-

lation results verify the validity of the derived CRLB bounds.

However, at SNRs smaller than 5 dB, the simulation estima-
tion variance for does not conform to the bound (c.f. Fig.

3), simply because the CRLB bound is valid for unbiased es-

timation only. At very low SNRs, the estimator tends to be

biased as is obvious from Fig. 4, and the unbiased CRLB

bound is not the valid bound anymore. In this case, the biased

CRLB bound should be considered instead. For the simula-

tion results, the unbiased CRLB bound is a very good predic-

tor of the true variance for SNRs greater than about 14 or 15

dB.

5. CONCLUSION

This paper has presented CRLB bounds for the unbiased esti-

mation of parameters in circadian rhythm data model MICA

under the assumption that noise variance is not known a pri-

ori. The resulting CRLB bounds have been confirmed through

Monte Carlo simulations using the MLE estimation method.

It has been observed that the estimators achieve the CRLB

bound at high SNRs, but that at very low SNRs, the estima-

tors tend to be biased and therefore the unbiased CRLB bound

is no longer the valid bound. In this way, future work involves

the study of the biased CRLB bound in MICA model.
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