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ABSTRACT

Based on linear prediction and weighted least squares, an it-
erative procedure for frequency estimation of a complex sinu-
soid in white noise is devised. The proposed approach, which
utilizes the first-order as well as higher-order linear prediction
terms simultaneously but does not require phase unwrapping,
can be considered as a generalized version of the weighted
linear predictor frequency estimator. Computer simulations
are included to contrast the performance of the proposed al-
gorithms with Cramér-Rao lower bound in one-dimensional
and two-dimensional frequency estimation.

1. INTRODUCTION

Estimating the frequencies of a sinusoidal signal in noise has
applications in many areas such as radar, sonar and communi-
cations. In this paper, we consider the most basic form of the
frequency estimation problem, namely, finding the frequency
of a pure complex tone in white noise. The one-dimensional
(1-D) single tone model is

xn = sn + qn, sn = Aej(ωn+φ), n = 1, 2, ..., N (1)

The sinusoidal amplitude, frequency and phase are denoted
by A, ω and φ, respectively, and they are considered as de-
terministic but unknown constants. While the noise qn is as-
sumed to be a zero-mean complex white process of the form
qn = un + jvn, where un and vn are zero-mean real white
processes with identical but unknown variances of σ 2/2 and
uncorrelated with each other. Although estimating the single
frequency is a fundamental and well-studied problem, efforts
have continually been made [1]-[9] to derive estimators that
can attain high estimation performance but with low compu-
tational cost. Our objective is also to estimate ω ∈ (−π, π)
accurately in a computationally simple manner, from the N
discrete-time noisy measurements of {xn}.

In the presence of white Gaussian noise, the maximum
likelihood (ML) estimate of frequency is obtained from the
periodogram maximum [10] but it involves extensive com-
putations. To avoid high computational requirement, auto-
correlation or linear prediction (LP) [1], and phased-based
[2] approaches are widely used choices. Although they are

similar in the sense that they both extract angle information,
their basic distinction is that the former utilizes the phase
of the autocorrelation function of {xn}, denoted by Rxx(l),
where l is the lag, while the latter considers the signal phase
to achieve frequency estimation. Founded on [1]-[2], many
computationally efficient frequency estimators with subop-
timal performance have been proposed in the literature, to
name but a few, [3]-[9]. Kay [3] has proposed the so-called
weighted linear predictor (WLP) frequency estimator, which
introduces different weights in computing a generalized ver-
sion of Rxx(1). Frequency estimation from a set of {Rxx(l)}
has been investigated in [4], [6], [8]. Recently, Brown and
Wang [9] have suggested to use LP together with low-pass
filtering, decimation and heterodyning iteratively for single
frequency estimation. On the other hand, an alternative to [2]
is devised by using the differenced phase data [3], which is
known as weighted phase averager (WPA), and this technique
has been extended via the use of simple low-pass filtering and
a set of filter banks in [5] and [7], respectively. However,
as discussed in [9], most of these computationally attractive
schemes have the demerits of poor threshold performance,
non-uniform estimation performance across the admissible
frequency range, limited frequency operation range and/or re-
quirement of phase unwrapping which becomes prone to er-
rors at low signal-to-noise ratio (SNR) conditions.

In this work, we aim to develop a computationally simple
and accurate frequency estimation approach which does not
have the above drawbacks. The rest of the paper is organized
as follows. Based on the LP property of a complex tone
and weighted least squares (WLS), we derive a generalized
version of the WLP frequency estimator in Section 2. Mean
and variance analysis of the frequency estimate is also
provided. In Section 3, we extend the proposed technique
to two-dimensional (2-D) single-tone frequency estimation.
Numerical examples are presented in Section 4 to corrob-
orate the analytical calculation and to evaluate algorithm
performance by comparing with WLP and WPA as well as
Cramér-Rao lower bound (CRLB). Finally, conclusions are
drawn in Section 5.
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2. GENERALIZED WEIGHTED LINEAR
PREDICTOR

The LP property of sn can be expressed as

sn = ρsn−1, ρ = ejω (2)

Based on (2), the LP error is

εn = xn − ρ̃xn−1, n = 2, 3, · · · , N (3)

where ρ̃ is a variable corresponds to ρ. Expressing (3) into
vector form yields

ε = X1 − ρ̃X2 (4)

where

ε = [εN , εN−1, · · · , ε2]T

X1 = [xN , xN−1, · · · , x2]T

X2 = [xN−1, xN−2, · · · , x1]T

with T denotes the transpose operation. The WLS cost func-
tion constructed from the LP error is then

J(ρ̃) = εHWε = (X1 − ρ̃X2)HW(X1 − ρ̃X2) (5)

where H represents the conjugate transpose and W ∈
C(N−1)×(N−1) is a weighting matrix which satisfies W =
WH . Differentiating J(ρ̃) with respect to ρ̃ and then setting
the resultant expression to zero, we get the WLS estimate of
ω, denoted by ω̂:

ω̂ = �

(
X2

HWX1

X2
HWX2

)
(6)

where � (.) represents the phase angle in [−π, π). An ideal
choice of W is given by the Markov estimate:

Wo = σ2[E{εqε
H
q }]−1 (7)

where Wo
−1 is of the form:⎡

⎢⎢⎢⎢⎢⎣

2 −ejω 0 0 · · · 0
−e−jω 2 −ejω 0 · · · 0

...
...

...
...

...
...

0 · · · 0 −e−jω 2 −ejω

0 0 · · · 0 −e−jω 2

⎤
⎥⎥⎥⎥⎥⎦

with εq = [qN − ejωqN−1, qN−1 − ejωqN−2, · · · , q2 −
ejωq1]T , E is the expectation operator and −1 denotes matrix
inverse. It is noteworthy that ejω is used instead of ρ in εq . In
doing so, we are able to obtain the closed-form expression of
Wo and its (m, n) entry is shown to be

[Wo]m,n =
N min(m, n) − mn

N
ej(n−m)ω (8)

where min(m, n) = m if m < n and it is equal to n other-
wise, for 1 ≤ m ≤ N − 1 and 1 ≤ n ≤ N − 1. It should
be noted that the factor 1/N in (8) can be omitted due to the
cancelation appeared in the numerator and the denominator
in (6). Furthermore, we notice that Wo is a positive-definite
Hermitian matrix, which implies that X2

HWoX2 is positive
and thus of zero phase. As a result, the frequency estimate
shown in (6) can be simplified as:

ω̂ = �
(
X2

HWoX1

)
(9)

As the ideal W is a function of the unknown frequency para-
meter, we propose to use a relaxation algorithm for iterative
frequency estimation and the procedure is summarized as fol-
lows:

(i) Compute an initial value of ω̂ using the WLP frequency
estimate.

(ii) Use ω̂ to construct Wo in (8).

(iii) Calculate an updated ω̂ using (9).

(iv) Repeat Steps (ii)-(iii) until parameter convergence.

Expanding (9) in a scalar form via summing up the diagonals
of Wo one by one yields

ω̂ = �

(
N−1∑
m=1

N−1∑
n=1

x∗
N−m[Wo]m,nxN+1−n

)

= � (
N−1∑
m=1

x∗
m [Wo]m,m xm+1 +

N−2∑
l=1

N−1∑
k=l+1

x∗
N−k [Wo]k,k−l xN−k+l+1 +

−1∑
l=2−N

N+l−1∑
k=1

x∗
N−k [Wo]k,k−l xN−k+l+1) (10)

where ∗ represents complex conjugate and

[Wo]m,m =
N

4

⎛
⎝1 −

[
m − 1 − (

N
2 − 1

)
N
2

]2
⎞
⎠ (11)

By comparing [3] and (11), it can be easily shown that the
first component of (10), that is, the sum which utilizes the
first-order autocorrelations, is identical to the WLP approach
with the same parabolic weights up to a real scalar. While
the second and third components of (10) represent the higher-
order as well as zero-order weighted linear prediction terms.
This clearly shows how our approach, which is referred to
as generalized weighted linear predictor (GWLP), generalizes
the WLP. It is noteworthy to mention that (10) is also similar
to autocorrelation-based methods of [4], [6], [8] which use
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different combinations of the higher-order autocorrelations.
However, one major difference between the GWLP and these
autocorrelation-based methods is that the latter are subject to
phase unwrapping errors or have limited frequency operation
range while the former is free of these demerits.

To simplify the bias and variance analysis of the GWLP
frequency estimate, we assume that the ideal weighting ma-
trix of (7) is used. Note that this assumption becomes valid
when ω̂ approaches the true value of ω, which is anticipated
to occur at sufficiently large SNR and/or data length condi-
tions. Taking the expected value of (9) with the use of the
ideal weighting matrix, it can be shown that

E{ω̂} = ω + E
{
�

(
e−jωX2

HWoX1

)}
≈ ω (12)

which indicates the approximately unbiasedness of the algo-
rithm. Expressing ω̂ = ω + ∆ω where ∆ω denotes the esti-
mation error, the variance of ω̂, denoted by var(ω̂), is derived
as

var(ω̂) ≈ E{(∆ω)2} ≈ 6
SNRN (N2 − 1)

(13)

where SNR = A2/σ2, which is equal to CRLB [10] for sin-
gle frequency estimation in white Gaussian noise. As a result,
we expect that the GWLP approach can attain optimum fre-
quency estimation.

3. EXTENSION TO TWO-DIMENSIONAL
ESTIMATION

The GWLP approach is extended to 2-D single-tone fre-
quency estimation as follows. The 2-D data set can be mod-
elled as

xm,n = γej(µm+νn) + qm,n

m = 1, 2, ..., M, n = 1, 2, ..., N (14)

where γ is the unknown complex amplitude and µ ∈ (−π, π)
and ν ∈ (−π, π) are the unknown frequencies of the 2-D tone
while qm,n is a zero-mean complex white noise.

By considering each row of {xm,n} is a 1-D signal which
is parameterized by ν only and utilizing all row information,
it is straightforward to apply (10) for estimating ν:

ν̂ = �

(
M∑
i=1

N−1∑
m=1

N−1∑
n=1

x∗
i,N−m[Wo]m,nxi,N+1−n

)
(15)

Alternatively, the estimate of µ is obtained in a similar man-
ner via partitioning {xm,n} column-by-column. We just fol-
low the iterative procedure in Section 2 to achieve 2-D fre-
quency estimation. It is noteworthy that the same procedure
can be used to extend the GWLP approach to higher dimen-
sional frequency estimation as well.

4. SIMULATION RESULTS

Computer simulations had been carried out to evaluate the
performance of the proposed GWLP approach in 1-D and 2-
D frequency estimation. We used 2 iterations in all GWLP
algorithms because no significant improvement was observed
for more iterations. The signal power was unity and we scaled
the noise sequence to produce different SNRs.

Figure 1 shows the mean square frequency error (MSFE)
performance versus SNR for 1-D case at ω = 0.1π and
N = 20. The results of the two computationally efficient
frequency estimation algorithms, namely, WLP and WPA [3]
as well as the CRLB were also included. It is seen that the
MSFEs of GWLP attained the CRLB for SNR ≥ 4dB, which
agreed with our theoretical analysis. Furthermore, the WPA
could approach the CRLB but its threshold SNR was higher
than that of the GWLP. While it is seen that the WLP was
optimum only for very high SNR conditions. Figure 2 plots
the frequency versus SNR contours of MSFE for GWLP at
N = 20 in order to investigate the threshold performance in
more detail. It is observed that the proposed approach had the
desired property of uniform estimation performance at suffi-
ciently high SNRs.

Figures 3 and 4 show the GWLP estimation performance
for a 2-D complex single-tone versus SNR when µ = ν =
0.1π with M = N = 8. The results of the 2-D version of the
WPA [11] and corresponding CRLB were also included for
comparison. It is observed that the performance of the GWLP
approached the CRLB for sufficiently high SNR conditions
and was superior to the WPA because the former had a smaller
threshold SNR.

5. CONCLUSIONS

A novel iterative frequency estimation approach, which is re-
ferred to as generalized weighted linear predictor (GWLP),
has been developed for a complex sinusoid embedded in
white noise. The proposed approach can be considered as
a generalized version of Kay’s weighted linear predictor fre-
quency estimator. The GWLP derivation is based on the well
known ideas of linear prediction and weighted least squares.
Extension to two-dimensional frequency estimation is also
studied. The optimality of the GWLP approach is demon-
strated via theoretical calculation as well as computer simula-
tions.
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Fig. 1. Mean square error of ω versus SNR
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Fig. 2. Contour plot of GWLP
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Fig. 3. Mean square error of µ versus SNR
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Fig. 4. Mean square error of ν versus SNR
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