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ABSTRACT

The maximizer of the periodogram of a sinusoid in additive noise is

known to have optimal asymptotic properties even when the noise

is neither Gaussian nor white. The effect of tapering or window-

ing on the accuracy of the estimator does not appear to have been

considered previously. In this paper, we present the asymptotic the-

ory for the maximizer of windowed periodograms of Hamming and

Hanning-type. We also introduce and analyse two closed-form fre-

quency estimators constructed from three Fourier coefficients of a

Hanning-tapered process.

1. INTRODUCTION

The statistical properties of various estimators of the frequency of

a noisy sinusoid are well-understood [1]. In particular, the maxi-

mizer of the periodogram has the same asymptotic properties as the

maximum likelihood estimator constructed under Gaussian white as-

sumptions, even when the underlying noise process is neither Gauss-

ian nor white. Routinely in signal processing it is not the raw time

series which is analyzed, but a tapered version of it. This tapering

is mainly done to obtain smoother and more accurate estimates of

the underlying noise spectral density, but there appears to have been

no theory developed to assess the effects of tapering on the maxi-

mizer of the periodogram of the tapered data. Note that estimating

the spectral density and the location of a sinusoidal frequency are

totally different problems.

Quinn [2][3] and MacLeod [4] have considered the use of Fourier

coefficients at three neighbouring frequencies to obtain accurate es-

timators of frequency. These techniques work, however, only when

the Fourier coefficients of the untapered time series are used.

In this paper, we develop asymptotic theory for the maximizer

of the periodogram of a noisy sinusoid, for a class of cosine tapers

which includes the Hanning and Hamming tapers. We also propose

and develop asymptotic theory for estimators based on the use of

Fourier coefficients of Hanning-tapered series at adjacent frequen-

cies, including two three-Fourier-coefficient estimators based on the

Quinn [2][3] estimators. Note that it is impossible to derive any the-

oretical results for fixed sample size for any frequency estimator of

this type.

2. ASYMPTOTIC THEORY OF THE WINDOWED
PERIODOGRAM MAXIMISER

In what follows we shall assume that {Xt} is a discrete time sto-

chastic process satisfying an equation of the form

Xt = ρ cos (ω0t + φ) + εt, t = 0, 1, . . .
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where ρ, ω0 and φ are unknown constants, with 0 < ω0 < π, and

{εt} is a stationary, zero mean, ergodic stochastic process satisfying

the conditions given in [2]. Note that {εt} need not be Gaussian or

white. Let JX (ω) =
PT−1

t=0 e−iωtXt.The periodogram IX (ω) of

{X0, X1, . . . , XT−1} is defined by IX (ω) = 2T−1 |JX (ω)|2 . Its

maximizer, bωT , satisfies T (bωT − ω0) → 0 almost surely as T →
∞ [5], while the distribution of T 3/2 (bωT − ω0) converges to the

normal with mean 0 and variance 48πf (ω0) /ρ2, where f (ω) =
(2π)−1 P∞

j=−∞ γje
−ijω is the spectral density of {εt} and γj =

E (εtεt−j) . Let Yt = htXt, where ht = α − 2β cos (at/T ) and

α and β are suitably chosen constants. Let bωT maximize IY (ω) =

2T−1 |JY (ω)|2, where JY (ω) =
PT−1

t=0 e−iωtYt. Then

Theorem 1 T 3/2 (bωT − ω0) is asymptotically normal with mean 0
and variance 32πf (ω0) c3/c2

4, where c3 and c4 are given by (5)
and (6) , if g (x) , given by (3) , has global maximum at x = 0.

Proof.

JY (ω) =

T−1X
t=0

e−iωt
n

α − βeiat/T − βe−iat/T
o

Xt (1)

= αJX (ω) − βJX (ω − a/T ) − βJX (ω + a/T ) .

Now, letting D = ρeiφ/2, and UT (ω) =
PT−1

t=0 e−iωtεt, we have

JX (ω) = DST (ω − ω0) + DST (ω + ω0) + UT (ω) (2)

where ST (λ) =
PT−1

t=0 e−iλt is
`
1 − e−iλT

´
/

`
1 − e−iλ

´
if λ �≡

0mod (2π) and T otherwise. Thus, JY (ω) = DZT (ω)+VT (ω)+
O (1) , for ω ∈ (0, π) , almost surely as T → ∞, where

ZT (ω) = αST (ω − ω0) − βST (ω − ω0 − a/T )

− βST (ω − ω0 + a/T )

VT (ω) = αUT (ω) − βUT (ω − a/T ) − βUT (ω + a/T ) .

Note that ST (ω + ω0) is O (1) since 0 < ω + ω0 < 2π. From

[5] and [6] it follows that VT (ω) = OP

“
T 1/2

”
and VT (ω) =

Oa.s.

“
{T log T}1/2

”
, uniformly in ω. However,

ZT (ω0) = αT − β
1 − eia

1 − eia/T
− β

1 − e−ia

1 − e−ia/T

= T

„
α − 2β

sin a

a

«
+ O (1)

and if ω �= ω0, ZT (ω) is O (1) . It is therefore plausible that IY (ω)
is maximized in a neighbourhood of ω0, unless α − 2β sin a

a
= 0,

which we shall exclude. Now

ZT

“
ω0 +

x

T

”
= T

j
α

1 − e−ix

ix
− β

1 − e−i(x−a)

i (x − a)
− β

1 − e−i(x+a)

i (x + a)

ff
+ O (1)
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and thus, since T−1VT (ω) → 0 almost surely and uniformly in ω,
T−1IY

`
ω0 + x

T

´
converges to

g (x) = 2

˛̨̨̨
α

1 − e−ix

x
− β

1 − e−i(x−a)

x − a
− β

1 − e−i(x+a)

x + a

˛̨̨̨2
,

(3)

almost surely as T → ∞. A necessary condition that T (bωT − ω0)
converge almost surely to 0 is that therefore that g (x) have global

maximum at x = 0 and the proof in [5] can be adapted to show

sufficiency. Now

0 = I ′
Y (bωT ) = I ′

Y (ω0) + I ′′
Y (eωT ) (bωT − ω0) , (4)

where eωT is between bωT and ω0. T (eωT − ω0) → 0, almost surely,

since T (bωT − ω0) does. The central limit theorem follows from

that for T−3/2I ′
Y (ω0) and by showing that T−3I ′′

Y (ω) converges

almost surely in a neighbourhood of ω0. Now

I ′
Y (ω) =

4

T
Re

˘
JY (ω) J ′

Y (ω)
¯

,

J ′
Y (ω) = DZ′

T (ω) + V ′
T (ω) + O (T ) ,

since when 0 < λ < π, S′
T (λ) =

PT−1
t=0 −ite−iλt = O (T ) .

Also, since the real and imaginary parts of

T−3/2U ′
T (ω) = T−3/2

T−1X
t=0

−ite−iωtεt

are asymptotically normal with finite variances,

V ′
T (ω) = αU ′

T (ω) − βU ′
T (ω − a/T ) − βU ′

T (ω + a/T ) ,

is OP

“
T 3/2

”
. Finally,

Z′
T (ω) = αS′

T (ω − ω0) − βS′
T (ω − ω0 − a/T )

−βS′
T (ω − ω0 + a/T ) ,

which will be shown to be O
`
T 2

´
when ω = ω0. Thus

T−3/2J ′
Y (ω0) = DT−3/2Z′

T (ω0)+T−3/2V ′
T (ω0)+O

“
T−1/2

”
.

Now, when 0 < λ < π, S′
T (λ) is

−iTe−iλT
“
e−iλ − 1

”
+ i

“
e−iλT − 1

”
e−iλ/

“
e−iλ − 1

”2

,

and so when a �= 0,

S′
T (a/T ) = T 2 e−ia

a
− iT 2 e−ia − 1

a2
+ O (T ) .

Also, if 0 < λ < π,

S′′
T (λ) = −T 2 e−iλT

e−iλ − 1
+ 2T

e−iλT e−iλ

(e−iλ − 1)2

+

`
e−iλT − 1

´
e−iλ

(e−iλ − 1)2
− 2

`
e−iλT − 1

´
e−2iλ

(e−iλ − 1)3
,

while S′′
T (0) = −T 3/3 + O

`
T 2

´
, and so, when a �= 0,

S′′
T (a/T ) = T 3

„
−i

e−ia

a
− 2

e−ia

a2
+ 2i

e−ia − 1

a3

«
+ O

`
T 2´

.

Thus

Z′
T (ω0) = −iT 2

j
α/2 − 2β

„
sin a

a
+

cos a − 1

a2

«ff
+ O (T ) .

ConsequentlyT−3/2I ′
Y (ω0) equals

4T−5/2 Re
`
D

˘
Tc1V

′
T (ω0) + iT 2c2VT (ω0)

¯´
+ oP (1) ,

where c1 = α − 2β sin a/a and

c2 = α/2 − 2β
˘
sin a/a + (cos a − 1) /a2¯

.

Now

Tc1V
′

T (ω0) + iT 2c2VT (ω0)

= Tc1

˘
αU ′

T (ω0) − βU ′
T (ω0 − a/T ) − βU ′

T (ω0 + a/T )
¯

+ iT 2c2 {αUT (ω0) − βUT (ω0 − a/T ) − βUT (ω0 + a/T )}

= −iT

T−1X
t=0

(c1t − c2T ) (bt,T + iat,T ) εt,

where bt,T +iat,T = e−iω0t {α − 2β cos (at/T )} . Thus, to oP (1) ,

T−3/2I ′
Y (ω0) = −4T−3/2

T−1X
t=0

(c1t − c2T ) (at,T Dr + bt,T Di) εt

where Dr + iDi = D. We next use [6], to show that

T−3/2I ′
Y (ω0) is asymptotically normal with mean 0 and variance

32πf (ω0) c3, where

c3 = lim
T→∞

T−3
T−1X
t=0

(c1t − c2T )2 (at,T Dr + bt,T Di)
2

=
|D|2

2

„`
α2 + 2β2´ „

c2
1

3
− c1c2 + c2

2

«
− 4αβ

j
c2
1τ1 (a) − 2c1c2τ2 (a) + c2

2
sin a

a

ff
+2β2

»
c2
1τ1 (2a) − 2c1c2τ2 (2a) + c2

2
sin (2a)

2a

–«
, (5)

τ1 (a) =
sin a

a
+

2 cos a

a2
− 2 sin a

a3
,

τ2 (a) =
sin a

a
− 1 − cos a

a2
.

Now

I ′′
Y (ω) =

4

T
Re

n˛̨
J ′

T (ω)
˛̨2

+ JT (ω) J ′′
T (ω)

o
,

J ′′
T (ω) = DZ′′

T (ω) + V ′′
T (ω) + O

`
T 2´

.

But, V ′′
T (ω) = Oa.s.

“
T 5/2 (log log T )1/2

”
uniformly in ω. Also

T−3Z′′
T (eωT ) = T−3 ˘

αS′′
T (eωT − ω0)

−βS′′
T (eωT − ω0 − a/T ) − βS′′

T (eωT − ω0 + a/T )
¯

,

which, since T (eωT − ω0) converges almost surely to 0, converges

almost surely to

lim
T→∞

T−3Z′′
T (ω0) = −α

3
+ 2βτ1 (a) .
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Thus T−3J ′′
T (eωT ) → D

˘−α
3

+ 2βτ1 (a)
¯

almost surely and, since

T−2J ′
T (eωT ) → −iD

˘
α
2
− 2βτ2 (a)

¯
and T−1JT (eωT ) → α −

2β sin a
a

, it follows that T−3IY (eωT ) converges almost surely to

c4 = 4 |D|2
˛̨̨
α

2
− 2βτ2 (a)

˛̨̨2
+4 |D|2

„
α − 2β

sin a

a

« n
−α

3
+ 2βτ1 (a)

o
. (6)

Finally, since, from (4) , bωT −ω0 = −I ′
Y (ω0) /I ′′

Y (eωT ) , the result

follows.

The main interest is the case where a = 2π, corresponding to

the Hanning and Hamming tapers. We then have

c1 = α, c2 = α/2, c4 = |D|2 α

„
−α

3
+

4β

π2

«
c3 = |D|2 α2

j
α2

24
− αβ

π2
+ β2

„
1

12
+

1

8π2

«ff
.

Thus the asymptotic variance when a = 2π is

128πf (ω0)
α2

24
− αβ

π2 + β2
`

1
12

+ 1
8π2

´
ρ2

`−α
3

+ 4β
π2

´2 .

When β = 0, i.e. when there is no tapering, this is just

v =
48πf (ω0)

ρ2
,

in agreement with [5]. For the Hanning and Hamming tapers, the

asymptotic variances are respectively 2.3428v and 1.6444v.

3. HANNING 3-POINT ESTIMATORS

We assume from now on that a = 2π. As in [2][3], we wish to

construct an estimator of ω0 using only a small number of Fourier

coefficients. In this case, we use only the tapered Fourier coeffi-

cients, JY (ωj) , where ωj = 2πj/T. From (1) and (2) , JY (ωj)
is

D {αST (ωj − ω0) − βST (ωj−1 − ω0) − βST (ωj+1 − ω0)}
+αUT (ωj) − βUT (ωj−1) − βUT (ωj+1) + O (1) .

We now use the ideas developed in [2][3]. Define nT , δT and bnT ,
possibly not uniquely, by ω0 = 2πT−1 (nT + δT ) , |δT | ≤ 1/2
and bnT = argmax

2≤j≤�(T−3)/2�
|JY (ωj)|2 .

Consider using only {JY (ωj) ; j = nT − 1, nT , nT + 1} to esti-

mate ω0. Although we cannot know nT , we shall use bnT to estimate

it, which has no asymptotic effect. Since the real and imaginary parts

of n
T−1/2UT (ωj) ; j = nT − 2, . . . , nT + 2

o
are asymptotically independent and normal with means 0 and vari-

ances σ2 = 2πf (ω0) [6], it follows that

{JY (ωj) ; j = nT − 1, nT , nT + 1}
is a set of asymptotically complex normal (dependent) random vari-

ables. The asymptotic log-likelihood constructed from these is

− 1

2Tσ2
(J − DZ)∗ Σ−1 (J − DZ) ,

apart from an additive constant involving σ2, where

J =
ˆ

JY (ωnT −1) JY (ωnT ) JY (ωnT +1)
˜′

,

Z =
ˆ

ZT (ωnT −1) ZT (ωnT ) ZT (ωnT +1)
˜′

and

Σ =

24 α2 + 2β2 −2αβ β2

−2αβ α2 + 2β2 −2αβ
β2 −2αβ α2 + 2β2

35 ,

the latter form calculated using the asymptotic dependence structure

of the VT (ωj) .
Now, for j = −1, 0, 1, DZT (ωnT +j) is asymptotically

TD
ei2πδ − 1

2πiδ

„
α

δ

δ − j
− β

δ

δ + 1 − j
− β

δ

δ − 1 − j

«
or Edj (δ) , say, where E = TD

`
ei2πδ − 1

´
/ (2πiδ). Let

d (δ) =
ˆ

d−1 (δ) d0 (δ) d1 (δ)
˜′

.

We could thus estimate δ by minimizing with respect to δ

S (δ) = min
E

(J − Ed (δ))∗ Σ−1 (J − Ed (δ)) (7)

= J∗ΩJ − |d′ (δ)ΩJ |2
d′ (δ)Ωd (δ)

,

where Ω = Σ−1 is given by

Ω11 = Ω33 =
α4 + 4β4`

α2 + β2
´ `

α4 − 3α2β2 + 6β4
´

Ω12 = Ω23 = Ω21 = Ω32 =
2αβ

α4 − 3α2β2 + 6β4

Ω13 = Ω31 =
β2

`
3α2 − 2β2

´`
α2 + β2

´ `
α4 − 3α2β2 + 6β4

´
Ω22 =

α2 + 3β2

α4 − 3α2β2 + 6β4 .

However, it is impossible to compute the maximizer of S (δ) in

closed form.

Following [2][3] we construct a closed-form estimator with ex-

actly the same asymptotic behaviour. We first construct two-point es-

timators: For j = −1, 1, put Rj = Re (JY (ωnT +j) /JY (ωnT )) .

Then, since the Vj = VT (ωj) are OP

“
T 1/2

”
and E = O (T ) ,

JY (ωnT +j)

JY (ωnT )
=

Edj (δ) + Vj

Ed0 (δ)
“
1 + V0

Ed0(δ)

”
=

1

Ed0 (δ)
{Edj (δ) + Vj}

j
1 − V0

Ed0 (δ)

ff
=

dj (δ)

d0 (δ)
+

Vj

Ed0 (δ)
− dj (δ) V0

Ed2
0 (δ)

+ OP

`
T−1´

.

Thus

Rj =
dj (δ)

d0 (δ)
+ Re

„
Vj

Ed0 (δ)
− djV0

Ed2
0 (δ)

«
+ OP

`
T−1´

,

and to first order Rj ∼ dj(δ)

d0(δ)
. Now

dj (δ)

d0 (δ)
=

α δ
δ−j

− β δ
δ+1−j

− β δ
δ−1−j

α − β δ
δ+1

− β δ
δ−1

,
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and so

d1 (δ)

d0 (δ)
=

α δ
δ−1

− β − β δ
δ−2

α − β δ
δ+1

− β δ
δ−1

=
δ + 1

δ − 2
× (α − 2β) δ2 − 2 (α − 2β) δ − 2β

(α − 2β) δ2 − α
.

Thus R1 = d1 (δ) /d0 (δ) is cubic in δ, unless α = 2β, i.e. unless

the taper is the Hanning taper, which we assume from now on. We

then have

d1 (δ)

d0 (δ)
=

(δ − 1) δ (δ + 1)

(δ − 1 − j) (δ − j) (δ + 1 − j)
=

j δ−1
δ+2

; j = −1
δ+1
δ−2

; j = 1.

We can therefore obtain two estimators of δ by solving for j =
−1, 1, Rj = dj (δ) /d0 (δ) . The solutions are

δ =

( bδ−1 =
2R−1+1

1−R−1bδ1 = 2R1+1
R1−1

.

Letting Uj = UT (ωnT +j) , we have

V−1

Ed0 (δ)
− d−1 (δ) V0

Ed2
0 (δ)

=
1

Ed0 (δ)

j
2U−1 − U−2 − U0 − δ − 1

δ + 2
(2U0 − U−1 − U1)

ff
,

V1

Ed0 (δ)
− d1 (δ) V0

Ed2
0 (δ)

=
1

Ed0 (δ)

j
2U1 − U0 − U2 − δ + 1

δ − 2
(2U0 − U−1 − U1)

ff
.

Without loss of generality replace E by |E| in the above. The as-

ymptotic distribution of the real parts of the above may be shown to

be normal with mean 0, as can that of

T 1/2
“ b∆ − ˆ

δ δ
˜′”

= T 1/2
h bδ−1 − δ bδ1 − δ

i′

If we choose as estimator of δ

bδ =

( bδ−1 ; bδ−1,bδ1 > 0bδ1 ; otherwise,
(8)

it can then be shown that T 1/2
“bδ − δ

”
is asymptotically normal

with mean 0 and variance

48πf (ω0)

ρ2 (4π2)
× π4δ2

`
δ2 − 1

´2

12 sin2 (πδ)
× (2 − |δ|)2 `

20δ2 − 20 |δ| + 14
´

9
.

In the same way as in [3], we can construct an “optimal” com-

bination of bδ−1 and bδ1 which has the same asymptotics as the min-

imiser of S (δ) . One such estimator is

bδ =
bδ−1 + bδ1

2
+ κ

“bδ2

−1

”
− κ

“bδ2

1

”
, (9)

where

κ (x) = − 5

14
log

`
35x2 + 120x + 32

´
+

√
155

140
log

0@7x + 12 − 4
q

31
5

7x + 12 + 4
q

31
5
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Fig. 1. Simulation results

is found using a simple integration argument.

Fig.1 displays the results of simulation experiments with var-

ious estimators. The curves plotted are root mean square errors

relative to the asymptotic standard deviation of the ordinary peri-

odogram maximizer (i.e. the square root of the Cramér-Rao lower

bound for the case of Gaussian noise). For each δ ∈ (−0.5, 0.5)
with 0.05 spacings, each estimate was computed for 1000 samples

of size T = 11025. The signal-to-noise ratio used was −10dB. The

highest to lowest values in the figure at δ = 0 correspond to the es-

timate given by (8) (3pt Hanning choice), the analogous MacLeod

[4] estimate (3pt Hanning MacLeod), the minimiser of S (δ) given

by (7) (3pt Hanning ls), the theoretical asymptotic RMSE of the es-

timator given by (9) (3pt Hanning theoretical), the estimate given

by (9) (3pt Hanning opt), the estimate given in [2] (FTI choice), the

theoretical asymptotic RMSE for the maximizer of the periodogram

of the Hanning-tapered periodogram (Hanning periodogram) and the

estimate given in [3] (FTI opt). The results are as expected.
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