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Abstract

The goal of Bounded Error Subset Selection (BESS) is to find the 

sparsest representation of an Nx1 vector b using vectors from a

dictionary A of size NxM, such that the approximation is within a 

distance  from b. Here is a user defined approximation

threshold. Specifically, the goal is to find the sparsest vector x

such that ||Ax – b|| . The BESS is a reformulation of the 

classical subset selection problem. We describe two enumeration 

approaches with bounded complexities that find the optimal

solution to the BESS problem. In particular, the paper describes 

the first exhaustive enumeration solution to subset selection type

problems with polynomial complexity. Furthermore, it also 

describes a lower complexity stack decoding approach that finds a 

solution to the BESS problem with a complexity that is 

proportional to that of orthogonal matching pursuit. The 

approaches described here have a markedly better rate-distortion 

behavior than any of the other known solutions to the subset 

selection and BESS problems. 

1. INTRODUCTION

Sparse signal representation finds application in many

signal processing areas such as coding, signal restoration,

direction finding, source localization, and linear inverse

problems, to name a few. In the subset selection problem

(SS), it is required to find the best signal representation for

a signal vector b using an overcomplete dictionary

represented by the N-dimensional vectors spanning the

column space of the matrix A. By construction, the number

of basis vectors M in the dictionary is such that N« M.

Thus, it is required to find the sparsest vector x (the vector

x with the minimum number of non-zero solution) such 

that Ax = b. It is known that the SS is a NP-hard [1].

Several strategies have been developed for solving the SS 

problem. In particular, the Method of Frame (MoF) finds

the solution which minimizes the 2-norm of the solution

vector which is equivalent to minimizing the 2-norm of the

reconstruction error. However, the MoF does not address 

the sparseness issue [2]. The Basis Pursuit (BP) algorithm,

which can be solved using linear programming, finds the

solution that minimizes the L1-norm of the solution vector

[1]. The BP algorithm produces a reasonably sparse

solution due to the properties of solutions to L1

minimization problems [3]. Matching Pursuit (MP) is an

iterative greedy algorithm in which the signal is iteratively

decorrelated from the basis vector which has maximum

correlation with the residual [5]. A variant of the MP called

the Orthogonal Matching Pursuit (OMP) performs an extra

step of orthogonalization before each iteration [6]. 

However, both MP and OMP are greedy algorithms that

lack a global optimization criterion. The Best Orthogonal

Basis (BOB) uses an entropy measure over orthogonal

bases to provide a near-optimal solution. However, as will

be seen in the simulation section, BOB fails to find a good 

representation for some signals when they cannot be

represented in terms of the assumed orthogonal structures.

In this paper, we discuss a variation of the SS problem that

analyzes a perturbed version of the signal under 

investigation instead of the signal itself. This is a realistic

assumption due to the presence of noise, masking effect, or

due to channel distortion. We describe two solutions to the

reformulated problem with bounded complexities. We

show that exhaustive enumeration can be done for the

reformulated problem with polynomial complexity. We

also describe a lower complexity solution to the problem

and demonstrate its superior performance when compared

to any of the known solutions to the SS problem.

.

2. BOUNDED ERROR SUBSET SELECTION 

The Bounded Error Subset Selection (BESS) has been 

introduced by the authors in [8]-[9] as a reformulation of

the classical subset selection problem. It has been shown 

that by introducing a perturbation vector to the signal

under investigation, b, one can obtain a maximally sparse 

representation of the signal from the overcomplete

dictionary A. In particular, the goal in BESS is to find the

sparsest vector x such that ||Ax – b|| for a user defined

approximation threshold .

Two solutions were proposed to the BESS problem in [8]

and [9]. In [8], the authors consider the case were the 

entries of x are restricted to be integer. In [9], an

approximate solution is derived by converting the BESS

problem into a sparse signal representation problem with a

positivity constraint that is then solved using ordinary

linear programming. In contrast, the solutions that we 

present here do not convert the problem into a different

problem. Further, one solution is exact while the other has

lower complexity and better performance than that of [8].

In the remainder of this paper, we will use the L2  norm to

measure approximation errors. Further, with no loss of 
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generality, we will assume that the vector b and all columns 

ak  of A have been normalized to each have unit L2 norm.

3. POLYNOMIAL TIME PROCEDURE 

The first approach that we present is an exact solution to 

the BESS problem with complexity that is polynomial in M

and 1/ . It is based on the observation that by looking for 

an approximation to b within , we effectively induce a 

quantization of  the N dimensional unit sphere on the 

surface of which b lives. This affords us the opportunity to 

implement an exhaustive search procedure with polynomial 

complexity as we explain below. 

We begin by noting that the sparse signal representation 

problem and BESS can be solved via exhaustive 

enumeration Exhaustive enumeration has exponential 

complexity. For discussion purposes, let us consider the 

following exhaustive search. At step i, the procedure 

produces a list Pi of approximations to b using all the 

subsets of columns of A that were considered up to step i-1

after we add to each individually the ith column of A. The

algorithm is initialized with an empty list P0 and an empty 

list of subsets of columns of A used to calculate the  

approximations. It terminates after M steps.

To reduce the complexity of the algorithm, we proceed as 

follows. In addition to the lists Pi, we keep track of two 

additional types of lists. We shall refer to the first type of 

lists as the approximation subsets lists. An approximation 

subset list i  is a list of subsets Sn of columns of A that 

were used to compute corresponding approximations in Pi.

We also keep track of the corresponding orthogonalization 

subsets lists i. Each subset n in this list initially is the 

same as the corresponding subset Sn of columns of A that 

was used to produce the corresponding approximation to b

in Pi.

We expand the lists as follows. Suppose that at step k we 

are dealing with ak the kth column of A. To produce an 

additional approximation by appending ak to an 

approximation subset Sn produced in steps 1 through k-1,

we add to the approximation corresponding to Sn the 

projection of b onto the component of ak that is orthogonal 

to the orthogonalization subset n corresponding to Sn.

We can reduce the complexity of the exhaustive search 

approach by using a trimming procedure. To differentiate 

between the trimmed and un-trimmed lists of 

approximations, we shall use Xi to refer to the trimmed list 

of approximation produced in step i. At the end of each 

step of the exhaustive enumeration algorithm, we trim the 

list Xi  of approximations that we have produced by 

eliminating from Xi any approximation that is within a 

distance from another approximation that is closer to b

or uses a smaller number of columns of A. We also update 

the orthogonalization subset corresponding to the 

approximation that we retained by replacing it with the 

approximation subset corresponding to the approximation 

that was eliminated.  Partial pseudo code for the approach 

is listed below. 

Calculate 1 from 

M  |A| 

L0={} % Li  list of subsets of dictionary vectors ai that were used to 

produce   approximations 

X0={} % Xi  list of approximations bi

for i  1 to M 

do {Li, Xi}  Merge-Lists{(Li-1, Li-1 + ai), (Xi-1, Xi-1 + 

ai)}

       {Li, Xi}  Trim(Li, Xi,; )

Let b*= A x* be the sparsest approximation to b in A that satisfies 

||b-b*||

return b* and x*

The modified exhaustive search approach described can be 

shown to provide a solution to the BESS problem and have 

complexity that is polynomial in M for any non zero choice 

of . An outline of the proofs follows. Suppose that for 

each approximation yi in the untrimmed list Pi there is an 

approximation zi in Xi  such that ||zi-yi|| 1.  It then follows 

from the way the orthogonalization and approximation 

subsets are constructed that if zi  is dropped from Xi, we

will nevertheless have ||zi+1-yi+1|| 1. Hence, for each 

approximation yi+1 in the untrimmed list Pi+1 there is an 

approximation zi+1 in Xi+1 that is within 1 of yi+1. This will 

hold true in particular for the optimal approximation y* =b 

in PM. By picking 1  = /M it then follows that the output 

z* of the procedure will be a solution to the BESS problem. 

The polynomial complexity of the algorithm in M and 1/

follows from the fact that the algorithm never has to keep 

track of more than -N approximations and terminates after 

M steps. Note however that the complexity of the 

procedure is exponential in N.

4. STACK DECODING ALGORITHM 

The main drawback of the polynomial time procedure is 

that it has a large memory requirement. Specifically, in the 

worst case, it needs to keep track of up to -N

approximations and their corresponding lists of 

approximation and orthogonalization vectors. To alleviate 

this problem, we propose a stack decoding procedure that 

generalizes orthogonal matching pursuit. As we shall see in 

the results section, the procedure yields better rate-

distortion curves than any of the subset selection 

procedures that have been reported in the literature so far. 

The stack decoding procedure maps the BESS problem 

onto a tree structure. Each node of the tree represents a 

particular approximation. The depth of a node indicates 
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how many vectors were used in the approximation. The 

branches of the tree indicate the vectors that were used to 

obtain the approximation. In particular, the root of the tree 

is zero and corresponds to an approximation that uses no 

column of A. The M children of the root correspond to all 

possible approximations of b that use a single column of A,

with the branch from the root to its child indicating which 

column of A was used. By expanding each child of the root, 

we reach the depth 2 nodes. These nodes correspond to 

approximations of b that use two columns of A.  Note that 

each of the M children of the root has M-1 children of its 

own. The branch from that child to any of its children 

indicates which column of A was added to get the new 

approximation. By tracing the path from the root to the any 

level 2 node, we recover the 2 columns of A that were used 

to compute the approximation corresponding to the node. 

The exhaustive solution to the BESS problem can 

theoretically be obtained by expanding the tree, level by 

level, up to N levels to get all possible representations of b

in terms of subsets of columns of A,  or  expanding it until 

an approximation is found with an approximation error less 

than the desired approximation error bound .

 To get a manageable algorithm, the stack decoding 

procedure implements an essentially breadth first tree 

search. This is to be contrasted with the mainly depth first 

behavior of the polynomial time exhaustive search 

procedure. It prunes the tree corresponding to the BESS 

problem after extending it by one level using three pruning 

procedures. First, it does not fully expand each node as it 

increases the depth of the tree. It simply retains for each 

node the best K2 of its children, i.e., it retains at most for 

each node K2 additional approximations. Next, it 

implements the pruning approach that is used by the 

polynomial time search algorithm. Specifically, it 

eliminates from the tree any approximation that is within a 

distance from another approximation that is closer to b

or is at a higher level (lower depth). Finally, it keeps the 

best K1 approximations, i.e., it trims the tree and keeps only 

the best K1 nodes.

As in all stack algorithms, the cost function that we use for 

selecting which nodes to trim, can play a major role in the 

computational complexity of the procedure and its 

performance. The cost function should measure the 

likelihood that any given path from the root will be on the 

optimal solution. Part of that likelihood can be evaluated 

from the approximation error corresponding to the node at 

the end of the path at any given step. The likelihood of the 

remaining path can be estimated as follows. Suppose that 

we are at  node n* and have performed k tree expansion 

steps, i.e., the deepest node in the tree is at most at level k.

Further, let L be an upper bound on the number of levels 

that we intend to use (L<N). We can add to the energy of 

the approximation to b corresponding to n*,  the sum of the 

energy of the projections of b on the closest L-k columns of 

A  to b in the L2  norm that are not on the path from the root 

to node n*. Note that these columns are readily available 

from the calculations performed by the algorithm to reach 

node n*.  As the algorithm proceeds, this calculation of the 

cost function can be refined at the expense of additional 

memory. This follows from the fact that as the algorithm 

proceeds, it can keep track of a subset of energies of all 

approximations with 1, 2,  etc. approximations of b in 

terms of the vectors that have not been used by any of the 

paths to the best K1 approximations retained so far.  

Note that the complexity of this approach described so far 

is no more than K1 K2 that of orthogonal matching pursuit. 

In our work, we have found that for all values of N, M and

 that we have considered, it is enough to take K1 and K2

to be 3 to find the optimal approximation to a given signal 

within the specified approximation error.  

We have also found that we need to add a backwards 

elimination step  to the procedure to find the sparsest 

possible solution. This is due to the fact that the algorithm 

may end up with an approximation within the desired error 

that uses more columns of A than is absolutely needed. 

This behavior is not unlike the behavior seen with normal 

orthogonal matching pursuit. The backwards elimination 

step recursively eliminates from the list of columns of A

corresponding to the best solution identified by the 

algorithm one column at a time, as long as the resulting 

approximation error does not exceed the desired 

approximation error bound .

Finally, note that a variant of the stack decoding is 

guaranteed to find the optimal solution to BESS at the 

expense of variable added memory and computational 

requirements. Specifically, the variant is based on the 

observation that in the worst case, the rate-distortion curve 

corresponding to the optimal solution will be linear in the 

number of vectors ak retained for approximation. Hence, 

the cost function it uses at step k is equal to the square root 

of the square of the approximation error at stage k minus 

(L-k)/L. The procedure then retains all approximations with 

a cost less than  as opposed to the best K1 approximations. 

The number of approximations it retains will thus change 

from problem to problem and from iteration to iteration for 

a given BESS problem. 

5. RESULTS

The proposed algorithm was compared to the well-known 

methods for sparse signal representation, namely, Basis 

Pursuit, Orthogonal Matching Pursuit, and Best Orthogonal 

Basis with L1 entropy. Simulation was performed on 

different signals and different dictionaries derived from the 

Atomizer package [10]. For illustration purpose, Figs. 1 

and 2 show the Carbon and Doppler signals of [10]. The 

signals were analyzed using the wavelet packet dictionaries 

generated by [10]. Figs. 3 and 4 display the corresponding 
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rate-distortion behavior of the various algorithms for the

two signals. In Figs. 3 and 4, the proposed stack decoding

algorithm and that of [9] are referred to as “Pruned 

enumeration” and “BESS” respectively. The stack

decoding results (“Pruned enumeration”) were obtained by

setting K1 = K2 = 3 and using a cost function equal to the

approximation error, i.e., not using any approximation error 

prediction term in the cost function. Note the dramatically

improved behavior of the proposed approach. Note in

particular that while OMP fails to represent the Carbon

signal properly, the proposed algorithm was able to

represent it using fewer coefficients compared to the BOB

and BP techniques. Similarly, the proposed algorithm

succeeded in sparsely representing the Doppler signal

compared to the other techniques as shown in Fig. 2.
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Fig. 1: Carbon signal

Fig. 2: Doppler signal.

Fig. 3: Rate Distortion curves for Carbon signal.

Fig. 4: Rate Distortion curves for Doppler signal.
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