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ABSTRACT

Instead of using the traditional approach of attenuating the 

speech frequencies which are contaminated by tones, the 

project uses image processing techniques to do an 

intelligent restoration of the contaminated frequencies. The 

first step is to obtain the fundamental frequency patterns 

which are repeated periodically throughout the image 

spectrogram.  These patterns are obtained by using cepstral 

estimation.  The following step is to restore the frequencies 

affected by the stationary tones making use of the shape and 

location of frequency patterns found in the previous step.  

The concept of Markov Random Fields (MRF) used in 

estimation problems of image processing is used for this 

restoration phase. 

1. INTRODUCTION 

Typically, speech that is contaminated by tones goes 

through a tone removal process that consists of two phases: 

detection and attenuation.  While this process as a whole 

provides reasonable results and is used widely in the field, 

there is still room for improvements [1].  These 

improvements could be made in the attenuation phase of the 

process.  The attenuation phase attenuates the frequency 

components of the speech signal that correspond to the 

frequencies of the tonal interference.  This operation can 

either produce a hole in the spectrum or leave some tone in 

the signal.  Both have undesirable effects on the 

reconstructed speech signal. 

The idea behind this research is to replace the 

attenuation phase of the tone-removal process by a 

restoration phase, i.e. the regions of the spectrogram of the 

contaminated speech signal that are contaminated by tones 

will be restored.  While the majority of research and 

practical efforts in tone removal processes have been 

directed at tone detection, very little attention has been 

given to the restoration of the speech affected by tones [1].  

The approach that this paper takes to solve the problem 

comes from an image processing point of view, in which the 

spectrogram is an image which will be restored in the areas 

affected by the tone or tones. The idea is that if a 

spectrogram appears to be closer visually and quantitatively 

to the original, it will provide a better quality of 

interference-free speech as an output.  Figure 1 and Figure 2 

show an outline of the current process and the proposed 

process respectively.

Figure 1. Flow diagram for the current process of tone 

removal.

Figure 2. Flow diagram for the proposed process of tone 

removal.

The restoration process consists of two steps.  The first step 

is the detection of the fundamental frequency patterns that 

appear throughout the spectrogram [2]. Since the other 

patterns in the spectrogram are just multiples of the 

fundamental frequency patterns, it is very easy to reproduce 

them from the knowledge of the fundamental frequency 

patterns.  The process of detecting the fundamental 

frequency patterns will be explained in Section 2. 

The second step consists of removing the areas of the 

spectrogram which have been contaminated by a tone and 

then restoring these affected frequencies by using a Markov 

Random Field (MRF).  The MRF models the missing 

section by allowing the information about the shapes and 

locations of the patterns calculated in Section 2 to be 
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incorporated into the values which are being restored.  

Section 3 will explain in detail the process of restoring the 

speech using an MRF which is based on the shapes and 

values of the frequency patterns in the spectrogram.  

Finally, Section 4 will provide conclusions and future 

directions for the image processing solution to the tone 

removal process that has been outlined in this paper.  

2. FINDING PATTERNS IN THE SPECTROGRAM 

The spectrogram is an image whose structure contains a 

repetition of certain patterns through its frequency range.  

Since speech consists of voiced and unvoiced segments, 

these patterns are only present in the time frames where 

voiced speech is present. By contrast, time frames which 

correspond to unvoiced speech do not contain any such 

patterns [2]. 

Voiced speech is characterized by the periodicity in its 

waveform called the pitch period.  In the frequency domain, 

this pitch period is referred to as the fundamental frequency.  

The collection of the fundamental frequencies for the voiced 

time frames creates the fundamental frequency patterns.  

These patterns and its multiples characterize the structure of 

the image spectrogram.  

 To find the fundamental frequency patterns, a pitch 

estimation technique is used.  One should be careful in 

choosing a proper technique for estimating the pitch, since 

the speech signals considered for this application contain 

stationary tones.  Therefore, the algorithm can be confused 

as to whether the period of the tone or the period of the 

speech is the correct pitch for a particular time frame.  In 

particular, for unvoiced or silence frames, where no speech 

pitch is present, the algorithm would choose the pitch of the 

tone as the correct pitch for that particular time frame.  In 

order to overcome this problem, a preliminary step that 

detects unvoiced speech and silence is required [3].  In this 

manner, when the algorithm finds an unvoiced or a silence 

frame, it does not calculate a pitch period for that particular 

frame. 

 For this application, a speech frame is classified as 

unvoiced or silence when its energy is -10dB below the 

average energy of all the speech frames in an utterance. For 

all the other speech frames, i.e. the voiced speech frames, 

the cepstrum technique is used to estimate their pitch [4].  

Other techniques for estimating pitch, such as 

autocorrelation, get confused by the presence of the tone. 

 For each of those voiced speech frames, the cepstrum is 

computed.  If the speech signal at a determined time frame k 

is referred to as sk(t) and its Fourier transform as Sk( ), the 

cepstrum cSk(t), can be calculated by: 

|])(S|[log)t(c k
1

Sk

−ℑ= (1)

where, log corresponds to the logarithm in base 10, | | 

corresponds to the magnitude and 
1−ℑ  to the inverse 

Fourier transform.   

The cepstrum is calculated for each voiced speech 

frame that forms the utterance.  Then, the peak cepstral 

value is found for each those frames, and the pitch period is 

determined as the location of the maximum peak, for each 

of the speech frames [3].  The collection of all the pitch 

periods for all the time frames forms the pitch pattern.  

However, in this paper, one is interested in finding the 

patterns that form the structure of the spectrogram.  

Therefore, the pitch pattern must be transformed to a 

fundamental frequency pattern.  This is done by computing 

an inverse of each of the values that form the pitch pattern 

and multiplying them by the size of the frame. 

For our applications, the spectrogram of the tone-

contaminated speech utterances will be formed by taking 

frames of 1024 samples, i.e. if the speech is sampled at 

8kHz the frames will be 128ms long.  Consecutive frames 

are taken with a 75% overlap between them, then each 

frame is multiplied by a Hanning window of 1024 samples.  

Finally the windowed speech frame is transformed to the 

frequency domain via the Fourier transform. 

      Figure 3 shows the spectrogram of a TIMIT utterance 

generated by the procedure mentioned above.  The utterance 

has been contaminated by a stationary tone which is 10dB 

above the rms level of the speech and located at 240Hz.  

This utterance corresponds to a female speaker. From the 

spectrogram, it is clear that the 240Hz tone erases most of 

the fundamental frequency pattern.  We are interested in 

recovering this fundamental frequency pattern as well as 

calculating the intensity values for each “pixel” in the image 

spectrogram that is contaminated by the tone.  Before 

estimating the pixel values that correspond to the tone 

frequencies, the tone is removed from the spectrogram.  

Removal of the tone implies giving a value of zero to the 

pixels which contained the tone.  In the rest of the paper, 

these pixels will be referred to as the “missing pixels”. 

 To find the fundamental frequency pattern we use the 

method explained in this section.  Figure 4 shows the 

fundamental frequency patterns and their first three 

harmonics superimposed to the spectrogram of the 

utterance.  Notice that the cepstrum technique detects the 

fundamental frequency patterns perfectly in the frames that 

correspond to voiced speech.  The sections in which this 

estimation errs correspond to some of the unvoiced frames 

of the speech utterance.  In those frames, as predicted, the 

algorithm chooses the frequency of the tone to be the 

correct frequency of the spectrogram. However, the pitch or 

fundamental frequency for those frames should be set to 

zero, since in theory the concept of pitch is not existent for 

unvoiced or silence frames. 

3. RESTORATION OF CONTAMINATED AREAS 

The restoration process of the areas which have been 

contaminated by a tone will use the knowledge of the 
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shapes and intensity values of the fundamental frequency 

patterns and their harmonics.  For that matter, a Markov  

Figure 3. Spectrogram of a TIMIT speech utterance 

contaminated by a stationary tone at 240 Hz. 

Random Field (MRF) is chosen as an appropriate image 

model for the spectrogram. Its parameters allow it to 

incorporate certain behaviors among local groups of pixels 

in the restored image.  An MRF is commonly used because 

of its ability to model successfully both the smooth regions 

and the discontinuities of the images.  By using an MRF 

whose penalty function is convex, the estimation problem 

results in a convex optimization problem which can be 

solved by iterative methods [5].  

 Let z be the image that we want to restore.  An MRF is 

used to describe its prior probability, p(z), where,

.

c

)]t
c

(-exp[)p(

∈
∝

C

zdz ρ (2)

In (2), the parameter  is a regularization parameter, c are

the indices of local groups of pixels called cliques and C is 

the overall set of those cliques. The t
cd terms form spatial 

activity measures, to allow a degree of similarity or 

dissimilarity between local groups of pixels in the cliques. 

The term (.) is the penalty function which controls how 

heavily the spatial activity measures are penalized. For this 

application, the convex penalty function (.) is chosen as, 
2

u)u( =ρ . (3)

 This paper uses a Bayesian approach for estimating z.

In particular, the Maximum a Posteriori (MAP) solution to 

estimating z is found by maximizing its posterior 

distribution given the observations x.  Namely, the solution 

is found by maximizing p(z|x)=p(z)p(x|z). The observation 

vector x refers only to the interference-free data of the 

spectrogram. By the nature of the problem, the observations 

x(k,f) are noise free, i.e. x(k,f)=z(k,f) for all (k,f) that is not 

an interference region. Then, from this fact p(x|z) is equal to 

1 for all x(k,f)=z(k,f) and is equal to 0 when some 

x(k,f) z(k,f); where k refers to the time frame and f to the 

frequency bin.   

Figure 4.  Spectrogram of TIMIT utterance contaminated by 

stationary tone at 240 Hz.  The fundamental frequency pattern 

and its first three harmonics are superimposed to the 

spectrogram and shown in dotted lines.  

Since we are only interested in the case where p(x|z)=1, the 

problem is reduced to maximizing only p(z) for the values 

of z(k,f) located in the tone-contaminated regions while 

maintaining z(k,f)=x(k,f) unchanged for the regions which 

are interference free.  Maximizing the probability p(z), is 

equivalent to minimizing the negative of its natural 

logarithm.  Then, the image estimate is the solution to, 
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z
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The solution to this convex minimization problem is 

determined iteratively based on a gradient descent 

algorithm, which starts with an initial estimate and updates 

the value of the image, z, for every subsequent iteration [5]. 

 Equation (4) is used to estimate the section of the 

spectrogram which was contaminated by the tone and is 

currently set to zero.  The zd
t
c

terms and the (.) function of 

(2) play a very important role in determining the final image 

result. The terms zd
t
c

are picked such that they carry the 

information about the shape and intensity of the frequency 

patterns to the missing pixels. The collection of vectors dc is 

a set of masks used to establish which pixels are interrelated 

and in what manner.  In this application, for every missing 

pixel, three masks are used.  These masks are shown in 

Figure 5. 
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Figure 5. Masks used for the construction of zd
t
c

.

The equations corresponding to these three masks are the

following, 

(a)for(k))af1,z(kf)z(k,
t
c −+−=zd (5)

(b)for(k))
b

f1,z(kf)z(k,
t
c −−−=zd (6)

(c)forF(k))fz(k,f)z(k,
t
c +−=zd (7)

where a(k) is the difference between the fundamental 

frequency at time frame k and the fundamental frequency at 

frame k+1, namely F(k)–F(k+1). Analogously, b(k) = 

F(k)–F(k-1).  The presence of a(k) and b(k) in the zd
t
c

terms in (5) and (6) ensure the preservation of the shape of 

the fundamental frequency patterns observed in the 

spectrograms.  The zd
t
c

term in (7), takes in consideration 

the pixel located one fundamental frequency above the pixel 

that is being calculated.  This ensures that the proper 

intensity values are estimated for the missing pixels. Notice 

that an extra mask reciprocal to Figure 5(c) can be added, to 

consider the pixel one fundamental frequency below the 

“missing” one.  Also the (.) function of (3) penalizes the 

zd
t
c

terms quadratically, and it ensures continuity and 

smoothness between the pixels in the masks of Figure 5. 

 Figure 6 shows the TIMIT utterance described in 

Section 2 after it has been restored using an MRF.  The 

section of the spectrogram occupied by the tone is now a 

restored image which is visually significantly better than 

that if the tone were just attenuated.  Most importantly, 

when the spectrogram is converted back to a speech 

waveform via an inverse Fourier transform and an ovelap-

add, there is an absence of residual tone and a consequent 

better quality sounding speech.  Even though Figure 6 offers 

a significant improvement over pure attenuation of the tone, 

there still is room for improvement.   For example, the 

recovered fundamental frequency pattern could have more 

defined edges by modifying the (.) function of (3). 

4. CONCLUSIONS 

This paper demonstrated a novel way of restoring tone-

contaminated speech data by using an image processing 

perspective.  The method first detects the shapes of pattern 

that form the spectrogram structure and then uses them in 

forming a Markov Random Field as a model for the 

replacement of the contaminated section of the spectrogram.  

Visual results of the restored spectrogram are very 

encouraging as compared to most common tone suppressing 

algorithms.  This in turn translates into a superior quality of 

the reconstructed speech.  Future work involves varying the 

(.) and dc parameters of the MRF to accommodate for 

sharper edges of the reconstructed patterns as well as 

situations where multiple stationary tones are present.  

Figure 6. Restored spectrogram of TIMIT utterance in Figure 

4. The use of an MRF was instrumental in preserving the 

pattern shapes which were contaminated by the tone. 
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