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ABSTRACT

In this paper, we investigate the effect of temporal correlation on the
dependence between the speech narrow and high frequency bands
covering the 0.3-3.4 kHz and 3.7-8 kHz ranges, respectively. We
follow the technique of using Gaussian mixture modelling of spectral
envelopes represented by Mel-frequency cepstral coefficients. The
correlation between the disjoint speech frequency bands is quantified
through mutual information (MI) and its ratio to highband entropy.
Speech exhibits considerable temporal correlation that is not explic-
itly accounted for by static parametrization of spectral envelopes. In-
cluding memory in speech parametrization (through delta features)
incorporates such temporal information of speech in its modelling,
and hence, MI gains are to be expected resulting in bandwidth ex-
tension with better performance. Results show that exploiting delta
features can increase certainty about the highband (ratio of MI to
highband entropy) by as much as 216% relatively, corresponding to
an absolute increase of 12%.

1. INTRODUCTION

In traditional telephone networks, speech bandwidth is limited to the
0.3-3.4 kHz range. As aresult, narrowband speech has sound quality
inferior to its wideband counterpart and it shows reduced intelligibil-
ity especially for consonant sounds. Wideband speech reconstruc-
tion through bandwidth extension (BWE) attempts to regenerate the
low (20-300 Hz) and high band (3.4-8 kHz) signals lost during the
filtering processes employed in traditional networks, thereby provid-
ing backward compatibility with existing networks.

In contrast to the abundance of published research on BWE tech-
niques, few researchers have investigated the correlation assumption
between the narrow and high band spectral envelopes. In [1], a rough
lower bound on the MI between narrow and high frequency bands
was derived. This initial attempt, however, did not present a mean-
ingful conclusion in terms of BWE. This work was extended in [2] to
quantify the remaining uncertainty of the high band given the narrow
band by determining the ratio of the MI between the two bands to the
entropy of the high-band. The authors show that this ratio (repre-
senting the dependence between the narrow and high bands) is quite
low. Therefore, existing BWE schemes based on memoryless map-
ping between spectra of both bands perform reasonably, not because
they accurately predict the true high band, but rather by extending
the narrow band such that the overall wideband signal sounds pleas-
ant. Accordingly, BWE methods should make use of some percep-
tual properties to ensure that the extended speech sounds pleasant.
More recently, Jax and Vary [3] show that characteristics of the ex-
citation of the input speech, such as gain or voicing, should also be
included in the speech feature vectors.

More relevant to the work presented here is the implementation
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of high-band spectrum envelope estimation using Hidden Markov
Models (HMMs) [4], with the advantage of embedding time corre-
lation properties of speech into spectrum estimation. Although the
authors objectively show the superior performance of their HMM
technique compared to others, the gain of exploiting speech tempo-
ral information through HMMs has not been explicitly quantified.
Worthy of note is also the work presented in [3] in which the effect
of several parameterizations on BWE performance was investigated
in terms of class separability as well as M1, although features repre-
senting temporal information were not considered.

In the work presented here, temporal information is explicitly
accounted for through the so-called delta features widely used in
speech recognition. These features are obtained through linearly
weighted differences between neighbouring conventional static fea-
ture vectors. Similar to [2] and [5], MI and highband entropy are es-
timated using the numerical method of stochastic integration, where
the marginal and joint distributions of the narrow and high band pa-
rameterizations are modelled by Gaussian mixture models (GMMs)
for both static and extended (static+delta) acoustic spaces.

To verify the goodness of the extended space models, we model
the marginal delta space distribution by a separate GMM. We also
extract the portion corresponding to the delta subspace distribution
from the extended space GMM, thus providing a second model for
the marginal delta space which may be inaccurately trained due to
ill-conditioning effects (since delta feature covariances are typically
an order of magnitude lower than those of static ones). The log-
likelihoods of these two models are estimated using the test data set
and compared. Under several extended space conditions, the log-
likelihood differences are found to be < 0.12%, thus confirming the
goodness of our extended space models.

Finally, we investigate the effect of the extent of embedded tem-
poral information on MI estimates. This is implemented by perform-
ing the above experiment for varying widths of the window of static
feature vectors involved in the estimation of the delta features.

2. MUTUAL INFORMATION ESTIMATION

Representing the narrow and high bands by the continuous (vector)
variables X and Y, respectively, the mutual information can be writ-
ten in terms of the joint and marginal pdf's as

o 2 1o fxy(z,y) -
) = [ [ et (Wx) fy(y))d ay. ()

Following [2] and [5], we model the densities using the GMM
form(z,y) = M am fa(a,y|0m), where M is the number of
mixture components, ., is the mth mixture weight and fc(-) de-
notes the mutlivariate Gaussian distribution defined by the mean vec-
tor and covariance matrix in 6, = {ftm, Cm }-
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Rewriting Eq. ()as I(X;Y) = E [log2 (%%)} and re-

placing the expectation operator by the sample mean yields (for N
. ~ N f ZTn,Yn

samples) [(X;Y) ~ &+ > log, (%) Thus, MI can

be estimated (in bits) using numerical integration by substituting the

pdf's for their GMM estimates; i.e.,

. 1
I(X:Y) =+ > log, (
n=1

Similarly, an estimate of the differential entropy of Y is obtained by

famm (Tn) farn (Yn)

W) =~ > Tog, (o (un)). G)

Since fL(Y) is susceptible to variable scaling, the discrete entropy
H(Y') provides a more consistent estimate of highband self-infor-
mation. H(Y') is approximated by

H(Y) ~ h(Y) — log,(A%), )

where K is the dimension of the vector Y. This approximation
is only valid if the quantization step-size A is small enough such
that the pdf of Y can be considered flat in each quantization bin
(high-rate assumption). Furthermore, since this approximation ap-
plies only to scalar quantizers, a certain distortion is introduced [2].

Using the MSE criterion, such distortion is given by D = K %2. As
Y represents the highband spectral envelope, the square-root of D
gives the average spectral distortion (SD). An average SD of 1 dB
is considered the threshold of spectral transparency for the narrow-
band range [6]. Since level discrimination in hearing decreases by a
small amount for highband frequencies, the 1 dB threshold—while
being more stringent than necessary—can still be applied for high-
band entropy calculations [2]. Thus, H(Y) can be estimated from
Eq. (4) given: (a) h(Y") obtained through Eq. (3), and (b) A satisfy-
ing an average SD of 1 dB.

3. SPEECH PARAMETRIZATION AND MODELLING

3.1. Parametrization

We parameterize the narrow and high bands by Mel-frequency cep-
stral coefficients (MFCCs). MFCCs were chosen since they can be
directly related to log-spectral-distortion [7]; an objective speech
quality measure widely used to assess the performance of spectral
envelope quantizers. Furthermore, as MFCCs are calculated using
a DCT, they have the desirable property of being decorrelated for
different speech classes. MFCCs were shown to provide the high-
est class separability among most common spectral envelope param-
eters [3]. The advantage in terms of our work is that employing
MFCCs results in GMMs with higher discriminative ability between
different speech classes, which in turn results in more accurate mod-
elling of the acoustic space, and hence, better MI estimates.

Rather than indirectly capture the temporal information of speech
through state-transitions in HMMs or increasing the amount of over-
lap of speech frames, we include memory directly in the spectral
envelope parametrization in the form of delta coefficients appended
to the MFCC vectors. Delta coefficients are obtained from the szatic
MEFCC vectors by a first-order regression (time-derivative) imple-
mented through linearly weighted differences between neighbouring
MEFCC vectors. Since immediately successive frames show only mi-
nor differences between their MFCC parameters, the trajectory of

parameter variation with time is more accurately and easily identi-
fied as the time separation between the the involved static frames in-
creases. Hence, the difference weights increase in proportion to the
distance (in frames) between the two static vectors whose difference
is being evaluated. We employ the HTK toolkit [8] to parameterize
narrow and high band speech using the following formula to calcu-
late the delta coefficients;

5 — S o1 Ocero — cio)
=
2355, 62

where §; is a delta coefficient vector at time ¢ computed in terms of
the corresponding static cepstral coefficient vectors c;—g to c;¢, and
O specifies the number of neighbouring static frames to consider.
The TIMIT speech corpus [9] (containing speech sampled at
16 kHz) supplied the training and test data sets. Fifteen Mel-warped
triangular filters acting on band-pass (0.3-3.4 kHz) filtered speech
files were used to obtain narrowband MFCCs, while 5 Mel-warped
triangular filters acting on high-pass (3.7-8 kHz) filtered speech files
provided highband MFCCs. The 3.4-3.7 kHz range was discarded to
avoid any dependencies between the narrow and high bands result-
ing from the filtering transition bands [2]. Delta coefficients were
then calculated from the resulting MFCCs by Eq. (5) and appended
to the static MFCC vectors for the extended space case. As the ratio
of highband to narrowband energy represents an important measure
of dependence between the narrow and high bands, the Oth cepstral
coefficient co (and its delta coefficient) was also appended to feature
vectors of each band in the static (and extended space) case(s).

. (&)

3.2. GMM modelling

To reduce computational requirements involved in GMM training,
the TIMIT corpus was not divided into phoneme classes as is the
case in [2], thus permitting the use of a single GMM to model all
phonemes in a manner similar to [5]. This is justified by the argu-
ments stated above regarding the class separability and discrimina-
tive ability of MFCCs as spectral envelope parameters. However, the
drawback is that full covariance matrices must be used accompanied
by an increase in the number of mixtures in order to ensure suffi-
cient modelling of the approximately 40 English phonemes. Typi-
cally, a hundred data points are needed to obtain reliable estimates
of each GMM parameter [2]. Consequently, given a fixed amount of
N available samples, there is a tradeoff between the number of mix-
tures M to be used and the dimensionality d of the acoustic space
being modelled, given by

N
M= : 6
Loo(ud#ﬂdg”)J ©

To increase the amount of available data, 20 msec frames with
50% overlap were extracted form the 3696 training and 1344 test
speech files available in the TIMIT database, resulting in 1,126,746
training and 411,620 test frames. For a maximum dimensionality
of 16 for the joint GMM representing the wide band (numerator in
Eq. (2)), E](\]i (6) yields 73 mixtures. Using the stochastic relation
L=+Y"_ 108, (famum(wn,yn)) for the GMM log-likelihood,
we found empirically that increasing the number of mixtures to 256
results in a mere 0.2% increase in the joint GMM log-likelihood
when using the test data set. Accordingly, as a compromise between
increased computation and modelling accuracy, we chose the num-
ber of mixtures (107) corresponding to the midpoint of increase in
log-likelihood as the M to be used in all GMMs in Egs. (2) and (3).
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4. EFFECT OF MEMORY INCLUSION

Let X (and Y) represent the static MFCC vectors, including co,
of the narrow (and high) band(s), with Ax (and Ay) representing
the delta coefficient vectors, including d.,, of the narrow (and high)
band(s). Then, dropping the hat sign on I (+,-), we estimate the in-
crease in MI; Ay, between the narrow and high bands as a result of
memory inclusion in the following two scenarios:

1. Adding memory to narrowband modelling only, i.e., extend-
ing the narrowband acoustic space, yielding

Ar=I(X,Ax;Y) - I(X;Y), 7

2. Adding memory to both narrow and high band modelling, i.e.,
extending both narrow and high band spaces, yielding

Ar = I(X,Ax; Y, Ay) — I(X;Y). )

For the first scenario, the relations between the information content
of the X, Y and A x acoustic spaces can be easily visualized through
the Venn diagram of Fig. 1. Using Fig. 1, A; of Eq. (7) can be
written as Ar = (R1 UR2 UR4) — (R1 UR2) = Ra represent-
ing the additional gain in MI between the narrow and high bands as
a result of exploiting narrow band temporal information. A similar
illustration for Scenario 2 is, however, more complex.

Rewriting Eq. (7) in terms of the component GMMs as in Eq. (2)
yields (dropping the subscript in faum (+));

1 f(@n, 02,0, yn) f(@n)
B8 DTG v wevieer)

By a similar substitution, Ay from Eq. (8) can be estimated by

1 f(wnﬁzmym5yn)f(xn)f(yn))
o= N;1°g2(fm,éxn)f(ym6yn>f<xmyn> - U0

The increase in certainty about the high band due to memory

inclusion can then be quantified by 51 £ % for Scenario 1, and

By & 1 W;ﬁéx’j” - ISEYY)) for Scenario 2. Hence, there are
a total of 5 GMMs to train in Scenario 1 and 6 for Scenario 2 in
order to obtain 3; and (2. As described in Section 3.2, although
the same number of mixtures is used for all GMMs (which differ
in dimensionality), this number (107) was determined based on the
log-likelihood of the GMM with maximum possible dimensionality
of 16. This ensures that training samples are sufficient to accurately
estimate GMMs of dimensionality < 16. Hence, since delta feature
covariances are typically an order of magnitude lower than those of
static ones, the only potential source of inaccurate GMM modelling
is that of ill-conditioned covariance matrices of spaces extended with
the A x subspace (in Scenario 1) or with the A x and Ay subspaces
(in Scenario 2). In other words, the delta subspaces may not be as
accurately modelled as the static subspaces, which would result in
lower estimates of Aj.

To verify the goodness of the extended space GMMs in Eq. (9)
(f(xn, 0z, ,yn) and f(xn, 0z, )), we model the marginal delta space
distribution; f(ds, ), by a separate GMM, thus avoiding potential ill-
conditioning effects on delta subspace GMM parameter estimation.
In addition, we extract the portion corresponding to the delta sub-
space from the extended space GMM, providing a second model for
the marginal delta space which may be inaccurately trained due to
ill-conditioning effects. The log-likelihoods of these two models are
estimated using the test data set and compared. In most of our ex-
periments described below in Section 5, we use 5 static MFCCs for

H(X

/B

H(Ax)

Fig. 1. Venn diagram representing the X, Y and A x spaces.

Dim(X,Y) I(x;v) H(y) IZ2)
(10,6) 152 2742 555%
(5,3) 1.47 1235 11.93%
(10,3) 149 1235  12.04%

Table 1. Results showing the MI (in bits), highband entropy (in bits),
and their ratio (in %) for the three reference static spaces.

the narrow band and 3 for the high band, resulting in a 5-dim. GMM
for f(dz,,), a 10-dim. GMM for f(xn, 0z, ), and a 13-dim. one for
f(zn, bz, ,yn). The estimated likelihood discrepancy is a negligible
0.08% between the f(0z,,) and f(xn, dz,, ) GMMs, and 0.12% be-
tween the f(ds,,) and f(xn, 0z, ,yn) GMMs, thus confirming that
our extended space models are as good as static space ones.

5. SIMULATIONS AND RESULTS

We use a maximum dimensionality of 16 for joint narrow and high
band GMM modelling (with maximum dimensionalities of 10 and 6
for the narrow and high bands, respectively) to reduce the compu-
tational requirements involved in GMM training. While this dimen-
sionality is slightly lower than that used in [2], it should be noted
that we employ full covariance matrices as opposed to diagonal ones
as in [2]. The maximum narrowband dimensionality of 10 coincides
with that of [5]. More importantly, it is the accurate estimation of
MI differences (given by Egs. (9) and (10)) that we seek rather than
the exact effect of MFCC dimensionality on mutual information.

The dimensionalities of the extended spaces in our experiments
are given by Dim(X, Ax,Y) = (5,5, 3) and Dim(X, Ax,Y, Ay)
= (5,5, 3,3) for Scenarios 1 and 2, respectively. We establish 3
reference static spaces for the estimation of I(X;Y") against which
to compare MI gains due to memory inclusion. These spaces are:

1. Dim(X,Y’) = (10, 6). The extended spaces of Scenario 2 are
obtained by replacing the last 5 narrowband and 3 highband
MEFCCs by the delta coefficients of the first 5 narrowband and
3 highband MFCCs.

2. Dim(X,Y) = (5,3). The extended spaces are obtained by
appending A x coefficients for Scenario 1, and A x and Ay
coefficients for Scenario 2.

3. Dim(X,Y) = (10, 3). The extended space of Scenario 1 is
obtained by replacing the last 5 narrowband MFCCs by the
delta coefficients of the first 5.

Table 1 shows the information measure results obtained for these
reference spaces. Comparing rows 2 and 3 shows that doubling the
narrowband dimensionality for the same highband dimensionality

only increases the I;jf;;) ratio by 0.92%, thus demonstrating the
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Scenario 1
S) I(X,Ax;Y) H(Y) X o)
2 1.50 12.35 12.17%
>4 1.47 12.35 11.93%
Scenario 2
o I(X,Ax;Y,Ay)  H(Y,Ay) HHReciin)
2 2.76 21.29 12.96%
4 2.96 19.72 15.01%
8 2.87 17.61 16.33%
12 2.71 15.98 16.96%

Table 2. Results for the extended spaces of Scenarios 1 and 2.

low importance of narrowband dimensionality (for a specific high-
band dim.) on MI estimates. The considerably lower II(LI)EYS;)
for the first reference space compared to the other two is due to the
additional information of the high band (resulting from the increased
highband dim.), most of which is not shared with the narrow band.

The effect of memory inclusion on MI and highband certainty is
represented in Table 2 for Scenarios 1 and 2. Fig. 2 provides a better
illustration of the obtained results. By comparing the results per-
taining to Scenario 1 with reference space 2 (i.e., where narrowband
delta features are appended to static ones rather than replace them),
it is clear that narrowband delta features add almost no new informa-
tion about the static highband space. There is a modest maximum in-
crease of 2% in highband certainity (31 = 0.24%) for a window size
of ® = 2 = 40 msec (which adds a phoneme’s transient onset and
ending portions to its 20 msec steady-state portion). Hence, the mod-
est increase results from additional information about the phonemes’
identity. For © > 4, however, there is no added information at all,
i.e., /1 = 0. In fact, comparing the same results to those of reference
space 3 leads us to conclude that using additional narrowband static
coefficients outperforms using delta coefficients.

In contrast, including memory in both narrow and high bands
results in significant gains in both MI and highband certainty (02)
as shown by the results pertaining to Scenario 2. Comparing these
results with those of reference spaces 1 and 2 shows that replacing
half of the static features by delta ones rather than appending them
results in higher highband certainty. Fig. 2 clearly illustrates the
strong effect of window size (©) on the % ratio. The
greatest gains are those due to short-term memory inclusion, i.e., for
© < 8representing a memory of ¢ < 160 msec. This duration corre-
sponds roughly to triphones (phonemes with left and right contexts).
In other words, the effect of memory inclusion is greatest when
triphone-specific temporal information is employed to better identify
individual phonemes (by exploiting inter-phoneme dependencies).
Phonemes with mostly highband energy, e.g., fricatives, stand to
have the most benefit of such short-term triphone memory inclusion.
Since BWE schemes generally perform poorly when reconstructing
such phonemes, the performance of such BWE schemes is expected
to be considerably improved by triphone-specific memory inclusion.
As shown in Fig. 2, the increase in highband certainty due to mem-
ory inclusion is slower for 8 < © < 20 (160 < ¢t < 400 msec).
This additional increase corresponds to intra-syllable dependencies.
The gains in highband certainty level out at a % ratio
of approximately 17.53% for © = 20. This window size represents
t 2 400 msec corresponding roughly to syllables. In other words,
delta features fail to capture any additional information about inter-
syllable dependencies. This is expected since such dependencies are
determined by language-specific semantic construction rather than

ratio

17}
16}
= 15p 3y
— 14t
N‘m

Scenario 1  static reference 3

\static reference 2

3 10 15 20 25 30
(C]

Fig. 2. Ratio of MI to highband entropy (%) versus © (span of

frames used for calculation of delta coefficients) for the extended

spaces of Scenarios 1 and 2. The é ratio of static spaces 2 and 3

(rows 2 and 3 in Table 1, resp.) are also shown for reference.

being a phonetic characteristic. Overall, memory inclusion per Sce-
nario 2 results in a 215.9% maximum increase in highband certainty
(B2 = 11.98%) when compared to reference space 1, and a 46.9%
maximum increase (B2 = 5.6%) compared to reference space 2.

6. CONCLUSIONS

We have investigated the effect of temporal correlation on mutual in-
formation between speech narrow and high frequency bands. Tem-
poral information is explicitly captured by delta coefficients of the
MFCC-parameterized spectral envelopes. We have shown that such
delta features efficiently incorporate relevant inter-phoneme as well
as intra-syllable information, resulting in considerable gains in high-
band certainty. Accordingly, we conclude that memory inclusion
provides an important source of potential BWE performance im-
provement at a negligible added computational cost.
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