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ABSTRACT

A kinematic tracking filter is considered in the context of gain

adaptation problem. The study suggests a simple adaptive-gain 

tracker based on minimization of the innovation variance. This is 

shown to provide the optimal Kalman gain. Accordingly, the 

innovation-based adaptive Kalman-like filter is constructed. The 

adaptive scheme is associated with a recursive MA-parameter

estimator. With proper links for the optimal gain-vector 

components, the multiple-parameter adaptive filter reduces to a 

constrained single-parameter version. The simulation study

justifies the filter performance for a wide range of conditions. 

1. INTRODUCTION 

The tracking (kinematic, polynomial, position-velocity, etc) 

filter remains in the focus of interest over recent decades. The

2nd and higher order trackers are commonly presented in the

Kalman-filter form. The Kalman scheme is usually replaced by a

steady-state, e.g., -  or - -  tracker [1-4] with a focus on the 

gain optimality w.r.t. the so-called tracking (maneuvering) index.

In the practice, however, the uncertain or non-stationary

conditions require the tracker adaptability.

Common adaptive versions of the tracking filter rely on such 

methods [4-6] as the multiple-model and interacting multiple-

model filtering, covariance matching technique, residual 

‘whitening’ and other, rather sophisticated schemes. 

The present work suggests, by contrast, a simple adaptive-gain 

filter exploiting the standard parameter estimation technique. 

The suggested approach is to incorporate the tracker into a 

canonical adaptation framework, while the tracker gain is treated 

as an adaptation parameter.

Keeping in mind the ‘whitening’ property of the innovation, 

one may construct the adaptation scheme by minimizing the 

innovation variance. As shown in the paper, under given

conditions the innovation-minimum-variance criterion is 

equivalent to the conventional Kalman-filter optimality criterion. 

For the considered models of tracking filter, there are two 

available adaptation schemes. The first scheme identifies the 

(previously differenced) observation signal by a standard

moving-averaged (MA) model and then translates the obtained 

parameters into the desired gain. The second method treats the

gain components explicitly with the help of corresponding

sensitivity functions. 

As one applies the particular -  and - -  tracking filters, the 

auxiliary constraint linking optimal  and  (or , and )

respectively) terms may be further used to reduce the space

dimension of the adaptive filter parameters. This modification

results in a single-parameter (e.g., ) constrained adaptive 

scheme appropriate for the two-state (or three-state, respectively)

kinematic model.

2. FILTER BASICS 

Let’s consider a canonical discrete-time kinematic model 
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where i – discrete time, xi – N×1 state-vector of the kinematic 

parameters, i.e., position and its derivatives, yi – observation, F – 

N×N transition matrix, h – 1×N measurement matrix, g – control 

vector, w and v are mutually uncorrelated process and

measurement noises, respectively, with variances Q= w
2 and 

R= v
2. The tracking filter follows the Kalman-like state-equation 
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where the superscript ‘^’ marks the estimator (for corresponding 

state-vector), ei denotes innovation, and ki - gain-vector. The 

asymptotic gain k=lim(ki) (i ) is defined as [1]
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with the covariance update equations 
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where P(+)={p(+)
i,j} and P(-)={p(-)

i,j}, i,j=1,…,N are the estimation

and prediction covariance matrices, respectively,
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is the innovation variance, and E – expectation sign. 

There are particular recipes to identify the tracking filter gain k.

Thus the so-called -  filter associates with the model
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where xi and its first derivative are the position and velocity

states, and T is the sampling period. The filter gain is specified 

as a vector with two normalized terms  and , i.e., 
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In the classical work [2],  and  are tied as
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Later, Kalata [3] has introduced a generalized (tracking) index 
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Thus, given ,  and  can be derived as [4]:
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Given , we can find  from the optimal [instead of (9)] link 
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Another common tracker, - -  filter, relies on the model

(13)

where the 3-state vector xi comprises, in addition, the second 

derivative, i.e., acceleration and, respectively, the gain-vector is

(14)

where  is an auxiliary term. The link (12) between optimal

and  holds, while the optimal  follows from the formula [3]

(15)

The minimum variance of ei, irrespective of the filter order, is 

(16)

As  is unknown, k should be determined adaptively. The

suggested approach is to incorporate the above trackers into a 

canonical prediction error based adaptation framework [7], while 

the gain k is treated as an adaptation parameter.

3. GAIN OPTIMALITY 

In applying the adaptation technique to a Kalman-like steady-

state filter, it is convenient to replace the prediction error by

innovation. It is known [8] that if the transition matrix F and 

observation matrix h are available, the value of k which whitens 

the innovation process (and minimizes the innovation variance) 

is the optimal Kalman gain. 

Note that the Kalman gain (3) obeys the optimality condition 
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where ‘Tr’ is short for the matrix trace, 
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On the second hand, minimizing S [defined in (6)] gives

(19)

In accordance to the theory, the Kalman gain should be

optimal for the underlying (19) combination of the filter states.

Below we will demonstrate the equivalence of (17) and (19) for

our particular constructions. 

3.1 -  Tracking Filter. 

The minimized prediction-error variance may be expanded as 
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Assume that P(-) is a steady-state covariance associated with

the optimal -  filter. Accordingly, P(+) may be derived as 
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The non-zero derivatives w.r.t. and  (up to a scale factor) are 
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Equating the first equation (22) to zero gives the Kalman-like 

(23)
Rpp 1,11,1

T

i

i

i

i T

T

T

TT

x

x

x

0

0

1

,

1

2

,

100

10

21

,

22

hgFx while the second equation (22) gives, in turn, the Kalman-like
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The non-diagonal cross-covariance element [third line (21)]

combines the Kalman optimality conditions both for and .

The loss function (20) is minimized with the same and  that 

minimize the loss function (18). 
T

TT 22k

3.2. - -  Tracking Filter. 

The prediction-error variance is now expanded as 
2
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As above, assuming P(-) is known we can find P(+). Noteworthy

that the 3×3 matrix P(+) of the 3-state - -  filter comprises the 

2×2 matrix (21) of the 2-state -  filter as a diagonal block. In 

addition to (21), the resultant matrix P(+) has new terms 
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The derivatives w.r.t. , and , up to a scale factor, are 
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Equating first two relations (27) to zero repeats (23) and (24),

while the third relation (27) gives the Kalman-like

k

iipTr
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Therefore minimization of the loss function (25) provides the

Kalman gains (23), (24) and (28). 0
1,1

kk

pS

4. ADAPTIVE TRACKER

Considering the adaptation problem, we will specify the

transfer function (t.f.) between the observation and innovation, 
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where q-1 denotes the one-step delay operator. From (29) follows 
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k=2,3, where (k) denotes a k-order difference, while 
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Eq. (30) defines the innovation sequence as governed by the 

observation yi autoregressive (AR) process coupled with the kth

difference. In turn, the observation follows from the inverse t.f. 
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as a properly integrated MA process driven by the white

(innovation) noise ei.
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The parameters of the t.f. (33) and components of k are 

linearly tied [see (31)-(32)]. Therefore the gain-adaptation

problem reduces to an identification of the MA-model of the kth

difference of yi. Summarizing the method (Method 1), we should 

find a kth difference of the observation yi, then estimate

parameters of the (k-order) MA model and, finally, map these

parameters into k. The core step – MA-parameter estimation can

be readily performed by a standard identification procedure. 

Alternatively, with the Method 2, one may apply the Kalman

state-equation (2), while the gain is updated using the explicit 

derivatives of the innovation w.r.t. k. The Method 2 relies on the

following below derivatives (sensitivity functions). 

4.1. –  Adaptive Tracking Filter. 

The derivatives of ei w.r.t. the (slowly varying)  and  are 

(34)

where,

(35)

is the pre-filtered error, k(q)=q[1-Dk(q)] (presently with k=2).

Eqs. (34)-(35) define a sensitivity function with two adaptation 

parameters,  and . A particular adaptation mechanism (RLS,

LMS) may be selected from those available in the literature [7].

The method assuming direct update of k allows some

reasonable modifications. Since the innovation-minimum-

variance gain fits the Kalman gain, we can reduce the number of 

adjusted parameters by constraining  and  with (9) [or (12)].

Considering as a function of  changes the first line (34) to 

(36)

where, using (9), we can find 

(37)

or, using (12), 

(38)

Applying either gradient (37) or (38) (together with a proper

expression for ) results in a single-parameter adaptive scheme.

A closed-form expression for the gradient can be expanded using

a particular function for . Substituing (37) into (36) results in 

(39)

To give the constrained adaptive filter even a simpler

‘truncated’ form, we can abandon the extra term in (36) and 

update  due to (34), while  follows from (9) [or (12)], as usual. 

4.2. – -  Adaptive Tracking Filter. 

The derivatives of ei w.r.t. (slowly varying) ,  and  are 

(40)

where the pre-filtered innovation term obeys (35) (with k=3).

Analogously, we may rearrange the three-parameter filter into 

a single-parameter. Viewing and  as functions of  gives 
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with the following from (15) 
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applied in conjunction with (37) [or (38)].

For the truncated form ( ’= ’=0) of the single-parameter 

adaptive filter, the Eq. (41) is reduced to the first equation (40). 

The above variants of the adaptive tracking filter were

implemented and tested in different simulation scenarios. 

5. SIMULATION 

The simulation study justifies the optimality of the adaptive

gain. It also compares the single-parameter (full and truncated) 

version of the adaptive filter to its multi-parameter origin. 
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The first experiment illustrates the steady-state performance of

the adaptive trackers for different tracking indices (Figs. 1-2). 

In each run, yi is generated due to the model (with k=2 or 3) 
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excited by the observation and plant noises, with T=1 and 

particular Q and R. The output signal is adopted, in turn, by a

multiple-parameter adaptive tracker (with Method 1 or 2) and by

its single-parameter variant (full or reduced), all with the RLS. 

As the filter converges and the innovation approaches the

white-noise sequence (what occurs very rapidly), the gain is

averaged over the remaining time and the resulting statistics are

collected. This procedure is repeated and the final gain is

averaged over 10 runs. These trials are performed with different

 changing from 10–4 to 102 (with Q=1 assumed constant, while 

R varied properly).
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The model (43) with k=2 was used to generate the signal with

the 1st-order trend. Fig. 1 compares the adaptive  and  obtained 

by different algorithms versus the theoretical  (solid curve) and 

(dash), respectively. First, Fig. 1 depicts the adaptive 

(diamond) and  (square) related to the two-parameter tracker 

implemented either by the Method 1 or 2 (both gave similar

results). Next, Fig.1 shows the adaptive  (circle) associated with 

the single-parameter tracker and, equivalently, its truncated

version. In mean, the adaptive  and  are very close to theory.
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Analogously, the model (43) with k=3 was used to generate the 

signal with the 2nd-order trend. Fig. 2 illustrates the performance

of the three-state adaptive tracking filter and its variants. i
i eqq

e ~24 121

As it was observed from the trials, the single-parameter

version of the adaptive filter demonstrates a lower gain-

adjustment noise than its multiple-parameter counterpart. The 

monitoring was necessary only for the single-parameter filter

utilizing the constraint (12) (which requires  < 1). Other filters 

hold stability even if  exceeds 1.

The truncated single-parameter adaptive - (or - - ) filter 

does not deviate considerably from its full-gradient form. 
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The second experiment is designed to illustrate the tracking 

capability of the constrained -  and - -  filters (Figs. 3 and 4, 

respectively). We assume that  jumps after each 2·104 samples

from log10( )=–3 to 3, by 1, and then returns back to –3. 

As the maneuvering index varies, the single-parameter

adaptive tracker properly adjusts and approaches the expected 

optimal gain. We may note a short transient and gain fluctuations

near the optimum. The performed simulations showed that the

adaptive gain always approaches the proper value irrespective of

the order and size of jumps. This assures us in the adequate 
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ability of the adaptive-gain kinematic filter to track the non-

stationary dynamic processes in a wide range of conditions. 

The multiple-parameter tracker also successfully copes with

the latter scenario however with a larger gain-adjustment noise. 

Fig. 4. Adaptive  (dash) vs optimal  (solid). varies each 

2·104  samples, from 10-3 to 103, by 10, and back to 10-3.

6. CONCLUDING REMARKS

Fig. 1. Tracker gains: ‘T’-theory, ‘A’ - adaptive filters, 

‘Single’ - single-parameter tracker. 
In the present study, the steady-gain -  and - -  tracking 

filters are given an adaptive-gain form. For the steady-gain

tracker, the innovation-minimum-variance criterion is shown to

provide the optimal Kalman gain. Accordingly, the innovation-

based adaptive Kalman-like tracking filter is constructed. 

As shown, the adaptive-gain trackers reduce to a canonical

recursive estimator of the MA-filter parameters. Thus, the 

suggested three-stage Method 1 combines a difference of the raw

observation signal, estimation of the MA-model parameters, and, 

finally, their linear transform into the filter gain-vector. An

alternative one-stage Method 2 updates the gain directly using 

the innovation sequence produced by the Kalman filter. 

The tracking filter form allows some reasonable modifications.

Thus, constraining the gain components, the multiple-parameter

filter is reduced to a single-parameter construction. 

The developed adaptive trackers were tested experimentally

for a wide range of conditions. In all runs, the gain approaches 

the optimal value predicted by theory. Both Methods 1 and 2 

(the latter in the multiple-parameter version) show same results. 

The single-parameter version indicates the lower gain-

adjustment noise compared to the multiple-parameter case. A

comprehensive analysis of the constrained single-parameter, 

particularly the non-linear filter is the issue of further studies. 

Fig. 2. Tracker gains: ‘T’-theory, ‘A’ - adaptive filters, 

‘Single’ - single-parameter tracker. 
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