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ABSTRACT

A kinematic tracking filter is considered in the context of gain
adaptation problem. The study suggests a simple adaptive-gain
tracker based on minimization of the innovation variance. This is
shown to provide the optimal Kalman gain. Accordingly, the
innovation-based adaptive Kalman-like filter is constructed. The
adaptive scheme is associated with a recursive MA-parameter
estimator. With proper links for the optimal gain-vector
components, the multiple-parameter adaptive filter reduces to a
constrained single-parameter version. The simulation study
justifies the filter performance for a wide range of conditions.

1. INTRODUCTION

The tracking (kinematic, polynomial, position-velocity, etc)
filter remains in the focus of interest over recent decades. The
2" and higher order trackers are commonly presented in the
Kalman-filter form. The Kalman scheme is usually replaced by a
steady-state, e.g., a-f or a-f-y tracker [1-4] with a focus on the
gain optimality w.r.t. the so-called tracking (maneuvering) index.
In the practice, however, the uncertain or non-stationary
conditions require the tracker adaptability.

Common adaptive versions of the tracking filter rely on such
methods [4-6] as the multiple-model and interacting multiple-
model filtering, covariance matching technique, residual
‘whitening’ and other, rather sophisticated schemes.

The present work suggests, by contrast, a simple adaptive-gain
filter exploiting the standard parameter estimation technique.
The suggested approach is to incorporate the tracker into a
canonical adaptation framework, while the tracker gain is treated
as an adaptation parameter.

Keeping in mind the ‘whitening’ property of the innovation,
one may construct the adaptation scheme by minimizing the
innovation variance. As shown in the paper, under given
conditions the innovation-minimum-variance criterion is
equivalent to the conventional Kalman-filter optimality criterion.

For the considered models of tracking filter, there are two
available adaptation schemes. The first scheme identifies the
(previously differenced) observation signal by a standard
moving-averaged (MA) model and then translates the obtained
parameters into the desired gain. The second method treats the
gain components explicitly with the help of corresponding
sensitivity functions.

As one applies the particular a-f and a-f-y tracking filters, the
auxiliary constraint linking optimal o and g (or a, B and y)
respectively) terms may be further used to reduce the space
dimension of the adaptive filter parameters. This modification
results in a single-parameter (e.g., a) constrained adaptive
scheme appropriate for the two-state (or three-state, respectively)
kinematic model.
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2. FILTER BASICS

Let’s consider a canonical discrete-time kinematic model
X = Fx, +gw,
1
Y, =hx; +v, o
where i — discrete time, x; — Nx1 state-vector of the kinematic
parameters, i.e., position and its derivatives, y; — observation, F —
NxN transition matrix, h — 1XN measurement matrix, g — control
vector, w and v are mutually uncorrelated process and
measurement noises, respectively, with variances O=c,’ and
R=0,’. The tracking filter follows the Kalman-like state-equation

X, =FX, +k, e @)

i+l

€1 = Yin —hFX;

where the superscript ‘"’ marks the estimator (for corresponding
state-vector), e; denotes innovation, and k; - gain-vector. The
asymptotic gain k=lim(k;) (i—») is defined as [1]

k=Ph"/s=P"n"/R 3)

with the covariance update equations
P = PO _khp®) @
®)

P = FPYF’ +g0g’

where P()= {p(+)i’j} and PO={p"; i}> ij=1,...,N are the estimation
and prediction covariance matrices, respectively,

§ = E((v,, ~hF&,J') = hP 0 + R ©

is the innovation variance, and £ — expectation sign.
There are particular recipes to identify the tracking filter gain k.
Thus the so-called a-f filter associates with the model

el Do o

where x; and its first derivative are the position and velocity
states, and T is the sampling period. The filter gain is specified
as a vector with two normalized terms o and f, i.e.,

k=(a p/T) ®
In the classical work [2], a and f are tied as
p=a/(2-a) ©
Later, Kalata [3] has introduced a generalized (tracking) index
A=0T/o, (10)

Thus, given A, a and f can be derived as [4]:

a=—0.125(A2+8A—(A+4)\/A2+8A) (an
B = 0.25(1\2 +4A - AVA + 8A)
Given a, we can find § from the optimal [instead of (9)] link

B=202-a)-41-a (12)
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Another common tracker, a-f-y filter, relies on the model

X, 1 T T2 T°/2 1
x,=|%,F=|0 1 T |g=| T |,h=|0 (13)
¥ 0 0 1 1 0

where the 3-state vector x; comprises, in addition, the second
derivative, i.e., acceleration and, respectively, the gain-vector is
k=l g/r y/2r*f (14)
where y is an auxiliary term. The link (12) between optimal «
and f holds, while the optimal y follows from the formula [3]

r=ple a9
The minimum variance of e,, irrespective of the filter order, is
S, =minS =07 /(1-a) (16

As A is unknown, k should be determined adaptively. The
suggested approach is to incorporate the above trackers into a
canonical prediction error based adaptation framework [7], while
the gain k is treated as an adaptation parameter.

3. GAIN OPTIMALITY

In applying the adaptation technique to a Kalman-like steady-
state filter, it is convenient to replace the prediction error by
innovation. It is known [8] that if the transition matrix F and
observation matrix h are available, the value of k which whitens
the innovation process (and minimizes the innovation variance)
is the optimal Kalman gain.

Note that the Kalman gain (3) obeys the optimality condition

(+)
onfe]_ a7)
ok
where ‘77’ is short for the matrix trace,
k
T[P]= > plt (18)
1
On the second hand, minimizing S [defined in (6)] gives
-)
s _h_ (19)
ok ok

In accordance to the theory, the Kalman gain should be
optimal for the underlying (19) combination of the filter states.
Below we will demonstrate the equivalence of (17) and (19) for
our particular constructions.

3.1 a-f Tracking Filter.
The minimized prediction-error variance may be expanded as

Pl = Pl + PO + 20T +0T/4 20)
Assume that P© is a steady-state covariance associated with
the optimal a-$ filter. Accordingly, P™) may be derived as
+ 2 —
P =(-a) pl) +a’R @1
P2+2) (ﬁ/T) (pll +R) (ﬁ/T)pl(_Z)+p£_2)
P )= [Plz (ﬂ/T pll kl a +Ra(ﬂ/T)
The non-zero derivatives w.r.t. & and S (up to a scale factor) are

o ap™)
Pu__ %P —pf;)(l—a)+Ra

o op
(+) 22
85722 % _[plz ﬂ/T pll ]+ ﬂ/T @2

I - 42

Equating the first equation (22) to zero gives the Kalman-like

05:171(,_1)/(171(,_1)+R) (23)
while the second equation (22) gives, in turn, the Kalman-like
BIT=p5)[(p) +R) 24

The non-diagonal cross-covariance element [third line (21)]
combines the Kalman optimality conditions both for a and .

The loss function (20) is minimized with the same a and £ that
minimize the loss function (18).

3.2. a-f}-y Tracking Filter.
The prediction-error variance is now expanded as

Pl = P+ 2p0T + pIT? + pIT? + pIT?
+ )T 4+ 0T /4

As above, assuming P© is known we can find P®. Noteworthy
that the 3x3 matrix P of the 3-state a-f-y filter comprises the
2x2 matrix (21) of the 2-state a-f filter as a diagonal block. In
addition to (21), the resultant matrix P has new terms

Pz 3 (7/2T) (p] Pt R) (7/2T2)P1(._3) + pgiz)
P3,2 = [2}7[:3 _(7/2T2)p1.1 kﬁ/T) (26)

+ Ry(B/21°)+ pi)+ QT 4
The derivatives w.r.t. a, f and y, up to a scale factor, are

25)

o ep)  aptt)

Py _ 9Py _ 9Py _P1(1)(1 0!)+R0!

o op oy

o) ol _aply @7
= = - T +R T

o8 oa oy [pzl IB/ pll ] ﬂ/

ap(+) Qp(*) : :

673}/3 = 67;2 oc _[p§,1) - (7//2T2>p1(,1)]+ R(7/2T2)

Equating first two relations (27) to zero repeats (23) and (24),
while the third relation (27) gives the Kalman-like

721" = p [(p) + R)
Therefore minimization of the loss function (25) provides the
Kalman gains (23), (24) and (28).

(28)

4. ADAPTIVE TRACKER

Considering the adaptation problem, we will specify the
transfer function (t.f.) between the observation and innovation,

29
W, =1-g hE[l-¢" (1-kn)F] 'k @9)
where ¢! denotes the one-step delay operator. From (29) follows
30
VV}’e = A(k)/ D k ( )
k=23, where A denotes a k-order difference, while
D, =1+(a+B-2)q" +(-a)q” €Y

Dy =1+(a+B+y-3)q" ' +(B-2a-F+y)q" (32)

+(a-1)g7°

Eq. (30) defines the innovation sequence as governed by the
observation y; autoregressive (AR) process coupled with the kth
difference. In turn, the observation follows from the inverse t.f.

— (k)

W, =Dy / A (33)

as a properly integrated MA process driven by the white
(innovation) noise e;.



The parameters of the t.f. (33) and components of k are
linearly tied [see (31)-(32)]. Therefore the gain-adaptation
problem reduces to an identification of the MA-model of the kth
difference of y;. Summarizing the method (Method 1), we should
find a kth difference of the observation y,, then estimate
parameters of the (k-order) MA model and, finally, map these
parameters into k. The core step — MA-parameter estimation can
be readily performed by a standard identification procedure.

Alternatively, with the Method 2, one may apply the Kalman
state-equation (2), while the gain is updated using the explicit
derivatives of the innovation w.r.t. k. The Method 2 relies on the
following below derivatives (sensitivity functions).

4.1. a—p Adaptive Tracking Filter.
The derivatives of ¢; w.r.t. the (slowly varying) o and  are

(2)py'
¢ D; (34)
Oe, —q’lE
a i
where, B
(3%

¢=¢/D, =¢+ DA'EI'—]

is the pre-filtered error, Di(q)=¢[1-Di(¢)] (presently with k=2).

Egs. (34)-(35) define a sensitivity function with two adaptation

parameters, o and 5. A particular adaptation mechanism (RLS,
LMS) may be selected from those available in the literature [7].

The method assuming direct update of k allows some

reasonable modifications. Since the innovation-minimum-

variance gain fits the Kalman gain, we can reduce the number of

adjusted parameters by constraining a and £ with (9) [or (12)].

Considering £ as a function of a changes the first line (34) to

de, - = Aas s

62 = _(1 + /B,)em te.,=—q lAei -pPe.,

where, using (9), we can find

, 0
p= £ = [2a(2—a)+a2]/(2—a)2 =2a/(2-a) (37)
or, using (12),
B =-2+2/1-a G38)

Applying either gradient (37) or (38) (together with a proper
expression for f) results in a single-parameter adaptive scheme.
A closed-form expression for the gradient can be expanded using
a particular function for . Substituing (37) into (36) results in

: _ 39
%:7q71[4(a72)27q" i (39
oa

To give the constrained adaptive filter even a simpler
‘truncated’ form, we can abandon the extra term in (36) and
update a due to (34), while f follows from (9) [or (12)], as usual.

(36)

4.2. a—f-y Adaptive Tracking Filter.
The derivatives of ¢; w.r.t. (slowly varying) a, f and y are

Oe, AG)D; |
i 25— gAY
oa D32 Vi q i
)

G _ 2 Dy ——gaz (40)
op Dy
Oe, 1y,

=—(¢7"+ ]
gk

where the pre-filtered innovation term obeys (35) (with £&=3).
Analogously, we may rearrange the three-parameter filter into
a single-parameter. Viewing £ and y as functions of a gives
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Oe, 1~ 1 ~ o~
80; =-(1+p+ 2 7e, - (Z 7=p-2)e ,—e., (41)
with the following from (15)
y'=07/0a = pap-p)la’ 2

applied in conjunction with (37) [or (38)].
For the truncated form (f’=y’=0) of the single-parameter
adaptive filter, the Eq. (41) is reduced to the first equation (40).
The above variants of the adaptive tracking filter were
implemented and tested in different simulation scenarios.

5. SIMULATION

The simulation study justifies the optimality of the adaptive
gain. It also compares the single-parameter (full and truncated)
version of the adaptive filter to its multi-parameter origin.

The first experiment illustrates the steady-state performance of
the adaptive trackers for different tracking indices (Figs. 1-2).

In each run, y; is generated due to the model (with &=2 or 3)

¥, = [0.5T2(1+q*1)/ (l—q’IHW,- +,

excited by the observation and plant noises, with 7=1 and
particular Q and R. The output signal is adopted, in turn, by a
multiple-parameter adaptive tracker (with Method 1 or 2) and by
its single-parameter variant (full or reduced), all with the RLS.

As the filter converges and the innovation approaches the
white-noise sequence (what occurs very rapidly), the gain is
averaged over the remaining time and the resulting statistics are
collected. This procedure is repeated and the final gain is
averaged over 10 runs. These trials are performed with different
A changing from 107 to 10? (with Q=1 assumed constant, while
R varied properly).

The model (43) with &=2 was used to generate the signal with
the 1°-order trend. Fig. 1 compares the adaptive a and f obtained
by different algorithms versus the theoretical o (solid curve) and
£ (dash), respectively. First, Fig. 1 depicts the adaptive a
(diamond) and f (square) related to the two-parameter tracker
implemented either by the Method 1 or 2 (both gave similar
results). Next, Fig.1 shows the adaptive a (circle) associated with
the single-parameter tracker and, equivalently, its truncated
version. In mean, the adaptive o and f are very close to theory.

Analogously, the model (43) with k=3 was used to generate the
signal with the 2"™-order trend. Fig. 2 illustrates the performance
of the three-state adaptive tracking filter and its variants.

As it was observed from the trials, the single-parameter
version of the adaptive filter demonstrates a lower gain-
adjustment noise than its multiple-parameter counterpart. The
monitoring was necessary only for the single-parameter filter
utilizing the constraint (12) (which requires a < 1). Other filters
hold stability even if o exceeds 1.

The truncated single-parameter adaptive a-f (or a-f-y) filter
does not deviate considerably from its full-gradient form.

The second experiment is designed to illustrate the tracking
capability of the constrained o-f and a-f-y filters (Figs. 3 and 4,
respectively). We assume that A jumps after each 2:10* samples
from log;o(A)==3 to 3, by 1, and then returns back to —3.

As the maneuvering index varies, the single-parameter
adaptive tracker properly adjusts a and approaches the expected
optimal gain. We may note a short transient and gain fluctuations
near the optimum. The performed simulations showed that the
adaptive gain always approaches the proper value irrespective of
the order and size of jumps. This assures us in the adequate

(43)



ability of the adaptive-gain kinematic filter to track the non-
stationary dynamic processes in a wide range of conditions.

The multiple-parameter tracker also successfully copes with
the latter scenario however with a larger gain-adjustment noise.
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6. CONCLUDING REMARKS

In the present study, the steady-gain a-f and a-f-y tracking
filters are given an adaptive-gain form. For the steady-gain
tracker, the innovation-minimum-variance criterion is shown to
provide the optimal Kalman gain. Accordingly, the innovation-
based adaptive Kalman-like tracking filter is constructed.

As shown, the adaptive-gain trackers reduce to a canonical
recursive estimator of the MA-filter parameters. Thus, the
suggested three-stage Method 1 combines a difference of the raw
observation signal, estimation of the MA-model parameters, and,
finally, their linear transform into the filter gain-vector. An
alternative one-stage Method 2 updates the gain directly using
the innovation sequence produced by the Kalman filter.

The tracking filter form allows some reasonable modifications.
Thus, constraining the gain components, the multiple-parameter
filter is reduced to a single-parameter construction.

The developed adaptive trackers were tested experimentally
for a wide range of conditions. In all runs, the gain approaches
the optimal value predicted by theory. Both Methods 1 and 2
(the latter in the multiple-parameter version) show same results.

The single-parameter version indicates the lower gain-
adjustment noise compared to the multiple-parameter case. A
comprehensive analysis of the constrained single-parameter,
particularly the non-linear filter is the issue of further studies.
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