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ABSTRACT

A method for performing unscented Kalman filtering with a
reduced number of sigma points is proposed. The procedure
is applicable when either the process or measurement equa-
tions are partially linear in the sense that only a subset of the
elements of the state vector undergo a nonlinear transforma-
tion. It is shown that for such models second-order accuracy
in the moments required for the unscented Kalman filter
recursion can be obtained using a number of sigma points
determined by the number of nonlinearly transformed ele-
ments rather than the dimension of the state vector. A pro-
cedure for computing the sigma points is developed. An
application of the proposed method to smoothed target state
estimation from bearings measurements is presented.

1. INTRODUCTION

We consider a stochastic dynamic system with the state xk ∈
R

nx , k = 0, 1, . . . a Markov process evolving according to

xk = f(xk−1) + vk, k = 1, 2, . . . , (1)

where the process noise {vk} is zero-mean and satisfies
cov(vk, vl) = Qkδk−l for all k, l. The initial state x0 ∼
π0. Indirect observations yk ∈ R

ny , k = 1, 2, . . ., of the
state are generated according to

yk = h(xk) + wk, k = 1, 2, . . . , (2)

where the measurement noise {wk} is zero-mean and sat-
isfies cov(wk, wl) = Rkδk−l and cov(wk, vl) = 0ny,nx

for all k, l with 0i,j a i × j matrix of zeros. The problem
of interest is to estimate the state from the observed mea-
surements. The minimum mean square estimator of the the
state at time k from measurements up to time k is the poste-
rior expectation E (xk|y1:k) where ya:b is the collection of
measurements from time a to time b.

For general nonlinear/non-Gaussian models the poste-
rior expectation cannot be computed. In such cases the
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Kalman filter (KF) provides a computationally efficient es-
timate with the useful property of being the linear minimum
variance estimate [2, 7]. Well-known approximations to the
KF include the extended KF (EKF) [4], obtained by lineari-
sation, and the unscented KF (UKF) [5], obtained by using
the unscented transformation (UT).

The UKF is particularly useful as it has about the same
computational expense as the EKF but does not require the
Jacobian matrix and is more accurate, significantly so in cer-
tain cases. The core of the UKF is the UT which approx-
imates the moments of a nonlinearly transformed random
variable by the sample moments of a set of sigma points
passed through the nonlinear transformation. A common
characteristic of the several UT variants is that the number
of sigma points is an increasing function of the dimension
of the random variable undergoing the transformation [6].

In many applications of practical interest the transfor-
mations f and h in (1) and (2) are only partially nonlinear
in the sense that they are applied only to certain elements
of the state vector. This is common, for instance, in target
tracking problems where measurements depend only on the
position elements of the state vector and are independent of
the velocity and acceleration elements [1]. In this paper it
will be shown that, for a class of nonlinear models we refer
to as partially linear, the moments required for the KF recur-
sion can be approximated with second-order accuracy using
the UT with a number of sigma points determined by the di-
mension of a subset of the elements of the state vector. This
permits a reduction in computational expense while ensur-
ing accuracy is maintained. Although the implementation is
quite different, the idea is similar to Rao-Blackwellisation
in particle filtering wherein partial linearity is exploited by
using a particle filter only for those elements of the state
which are nonlinearly transformed [9]. Inference for the re-
maining elements is performed using a KF.

The paper is organised as follows. The UKF is reviewed
in Section 2. The reduced sigma point transformation is
presented in Section 3 and an application is given in Section
4. Conclusions are drawn in Section 5.

III ­ 371­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



2. THE UNSCENTED KALMAN FILTER

The linear minimum variance estimate of the state xk is ob-
tained using the KF [7]. The KF characterises the state esti-
mate at time k− 1 by a mean xk−1|k−1 and covariance ma-
trix P k−1|k−1. For general nonlinear/non-Gaussian mod-
els, these moments can be interpreted as approximations of
the true posterior mean and covariance matrix. According
to the maximum entropy principle the posterior density is
taken to be Gaussian [2] so that the posterior density at time
k − 1 is approximated as,

p̂(xk−1|y1:k−1) = N(xk−1; x̂k−1|k−1, P k−1|k−1), (3)

where N(z; µ,Σ) is the Gaussian pdf with mean µ and co-
variance matrix Σ evaluated at z. The first step in the KF
recursion is to compute the predicted mean and covariance
matrix,

x̂k|k−1 = E(f(Xk−1)|y1:k−1), (4)

P k|k−1 = cov(xk, xk|y1:k−1), (5)

where expectations are taken with respect to the density (3).
The predicted mean and covariance matrix are then cor-
rected using the current measurement to give

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (6)

P k|k = P k|k−1 − KkΨ′
k, (7)

where

ŷk|k−1 = E(h(xk)|y1:k−1), (8)

Sk = cov(yk, yk|y1:k−1), (9)

Ψk = cov(xk, yk|y1:k−1), (10)

with Kk = ΨkS−1
k and expectations are with respect to

p̂(xk|y1:k−1) = N(xk; x̂k|k−1, P k|k−1). (11)

The conditional expectations (4), (5) and (8)-(10) cannot in
general be computed exactly. The UT is a numerical tech-
nique for approximating these expectations.

2.1. The unscented transformation

We describe the UT as presented in [5]. Consider a random
variable r ∈ R

n with mean µ and covariance matrix Σ
passed through a nonlinear transformation g : R

n → R
m.

The UT approximates the moments of the random variable
z = g(r) by propagating through g a set of weighted sigma
points selected to match the mean and covariance matrix of
r. For the covariance matrix Σ, define the square root

√
Σ

such that
√

Σ
(√

Σ
)′

= Σ. The ith column of a matrix Σ

is denoted as Σi. The set of sigma points R0, . . . ,R2n are
then selected as

Ri =

⎧⎪⎪⎨
⎪⎪⎩

µ, i = 0,

µ +
(√

(n + κ)Σ
)

i
, i = 1, . . . , n,

µ −
(√

(n + κ)Σ
)

i−n
, i = n + 1, . . . , 2n,

(12)
where κ is a parameter to be selected. The sigma points are
given the weights

wi =
{

κ/(n + κ), i = 0,
1/{2(n + κ)}, i = 1, . . . , 2n.

(13)

The sample mean and covariance matrix of the sigma points
are equal to µ and Σ respectively [5]. Each of the sigma
points is passed through g to obtain Z i = g(Ri), i =
0, . . . , 2n. The mean and covariance matrix of z and the
cross-covariancematrix cov(r, z) can then be approximated
using the sample moments of the sigma pointsR0, . . . ,R2n,
Z0, . . . ,Z2n. The moment approximations are accurate up
to second-order [5], i.e., the moments of the Taylor series
expansion of g(r) taken about µ agree with the approxima-
tions up to and including the second-order terms.

3. REDUCED SIGMA POINT TRANSFORMATION

In this section it is shown how, for certain transformations,
the UT can be used to approximate the required moments
with a reduced number of sigma points. In the following
the ith element of a vector v is denoted as v(i).

Let z = g(r) where r ∈ R
n has mean µ and covariance

matrix Σ. Assume the partitioning r = (a′, b′)′ where a ∈
R

n1 and b ∈ R
n2 , n1 + n2 = n, such that

z =
(

c
d

)
= g(r) =

(
γ (a)
Γr

)
. (14)

Let ν = E (a), Ω = cov(a, a) and Φ = cov(r, a). We
first show that matching µ and Φ is sufficient for second-
order accuracy in the approximation of the required mo-
ments.
Proposition 1: For the random variable z = g(r) of (14),
the terms up to and including second-order in the Taylor se-
ries expansions of the moments E(z), cov(z, c) and cov(r, c)
are independent of cov(b, b).
Proof: For g as given in (14), the Taylor series expansion
of z = g(r) about µ is

z =

⎛
⎜⎝

∞∑
i=0

ei

Γr

⎞
⎟⎠ , (15)

where

ei =
1
i!

⎛
⎝ n1∑

j=1

(a(j) − ν(j))
∂

∂a(j)

⎞
⎠

i

γ (a)|a=ν . (16)
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The expected value of (15) can be found as

E(z) =

⎛
⎜⎝ γ (ν) + ξ(ν,Ω) +

∞∑
i=3

E(ei)

Γµ

⎞
⎟⎠ , (17)

where ξ(ν,Ω) is a second-order term depending on the mean
ν and covariance matrix Ω of a. Since e0 = γ(ν) and
e1 = Jγ(a − ν) where Jγ = ∇aγ(a)′|a=ν and ∇ is the
gradient operator, we have

cov(z, c) =
(

JγΩJ′
γ

ΓΦJ′
γ

)
+ H, (18)

where the H contains higher-order terms. Similarly,

cov(r, c) = ΦJ′
γ + L, (19)

where L contains higher-order terms. Eqs. (17), (18) and
(19) show that the terms up to and including second-order
of the required moments do not depend on the covariance
matrix cov(b, b).

A direct corollary of Proposition 1 is that when the UT
is used to approximate the second-order moments of z and
r second-order accuracy can be achieved by selecting the
sigma points to match the mean of r and the cross-covariance
matrix between r and the partition a. Note that the mo-
ments not accounted for in Proposition 1 can be computed
exactly as cov(d, d) = ΓΣΓ′ and cov(r, d) = ΣΓ′.

The sigma points are selected as

Ri =
( Ai

Bi

)
= µ +

(
σi

ωi

)
, (20)

for i = 0, . . . , 2n1 + 1. The weights are selected as in (13)
and the perturbations σ0, . . . , σ2n1 are the same as the per-
turbations in (12) with Σ set to Ω and n set to n1. The
sigma points ω0, . . . , ω2n1 are selected to match the mean
τ = E(b) and the cross-covariance matrix ∆ = cov(a, b).
The mean can be matched by selecting a symmetric set of
sigma points, i.e., ω0 = 0n2,1 and ωi = −ωi+n1 , i =
1, . . . , n1. With this set of sigma points, the sample cross-
covariance matrix between a and b can be written as

2n1∑
i=0

wi
(
ν −Ai

) (
τ − Bi

)′
=

1
n1 + κ

n∑
i=1

σiωi′. (21)

Equating this sample covariance matrix to ∆ gives, after
some working, the system of equations

√
Ω

n1 + κ

⎛
⎜⎝

ω1(j)
...

ωn1(j)

⎞
⎟⎠ = ∆j , (22)

for j = 1, . . . , n2, where ωi(j) is the jth element of ωi.

4. EXAMPLE APPLICATION

In this section the reduced sigma point transformation of
Section 3 is applied to the problem of smoothed state es-
timation of a moving target from bearings measurements.
The nonlinearity in the measurement equation prevents com-
putation of the optimal solution to this problem. Here smooth-
ing over l lags is performed using the UKF to obtain filtered
state estimates of an augmented state comprised, at time k,
of the target states xk−l:k . Existing techniques for compu-
tationally efficient smoothing include an extended Kalman
smoother (EKS) [8] and a refined technique, referred to here
as EKS2 [3]. Comparisons between these methods, the un-
scented Kalman smoother (UKS) and the Cramér-Rao bound
(CRB) will be performed.

The target state is xk = (xk, ẋk, yk, ẏk)′ where xk is
the target x-position and yk is the target y-position. The
evolution of the target state is modelled as in (1) with

f(xk−1) =
(

I2 ⊗
(

1 T
0 1

))
xk−1, (23)

Qk = I2 ⊗ q

(
T 3/2 T 2/2
T 2/2 T

)
, (24)

where Im is the m×m identity matrix, ⊗ is the Kronecker
product, T = 1 is the sampling period and the process noise
is Gaussian with intensity q = 1 × 10−3.

Bearings measurements are made by an observer with
known position sk = (ξk, ζk)′ at time kT . The measure-
ment equation is given by (2) with

h(xk) = arctan{(yk − ζk)/(xk − ξk)}, (25)

Rk = (2π/180)2. (26)

where the measurement noise is Gaussian. To ensure ob-
servability the sensor platform moves in a circular path of
radius 35 centred at the origin of the plane. The target tra-
jectory of 50 time steps is generated without process noise
with initial target state x0 = (30, 0, 840,−60)′. The esti-
mation algorithms are initialised with a Gaussian prior with
mean given by the initial target state and covariance matrix
P 0 = diag(10, 1, 10, 1).

Assume that smoothing is to be performed with a fixed-
lag l ≥ 1. The augmented state approach formulates the
smoothing problem as filtered state estimation of the aug-
mented state vector Xk = (x′

k, . . . , x′
k−l)

′. Let X
(j)
k =

xk−j+1, j = 1, . . . , l + 1 denote the jth partition of Xk.
The augmented state then evolves according to

Xk = F (Xk−1) + Vk, (27)

where Vk = (v′
k,01,nxl)′ and

F (Xk−1) =
(

f
(
X

(1)
k−1

)′
, X

(1)′
k−1, . . . , X

(l)′
k−1

)′
. (28)
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Measurements are generated according to

yk = H(Xk) + wk, (29)

where H(Xk) = h(X(1)
k ). The j-lag smoothed estimate

of xk−j is given by the partition X̂
(j+1)

k|k , j = 0, . . . , l.
For the filtering problem described by (27) and (29) the

UT is required only for the measurement update since the
process equation (27) is linear and Gaussian. The procedure
of Section 3 can be used to approximate the moments (8)-
(10) required for the measurement update by noting that H
in (29) is of the form (14) with a = (xk, yk)′ and b =
(ẋk, ẏk, X

(2)′
k , . . . , X

(l+1)′
k )′. Since the dimension of a is

n1 = 2 only 2n1 + 1 = 5 sigma points are required. These
can be found as shown in Section 3.

The performances of the various algorithms are mea-
sured by the RMS position error averaged over 1000 reali-
sations and the first 30 time steps. Smoothing lags from zero
to twenty are considered. Figure 1 shows the RMS position
errors of the EKS, EKS2 and UKS plotted against smooth-
ing lag. The CRB is also shown. As expected all algorithms
improve as the smoothing lag increases. The best perfor-
mance is achieved by the UKS with the EKS2 and EKS per-
forming almost identically. The use of the reduced sigma
point transformation in the UKS reduces computational ex-
pense by half compared to a straightforward application of
the UT.
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Figure 1: RMS position error plotted against smoothing lag
for the EKS (dash-dot), EKS2 (dotted) and UKS (dashed).
The CRB is shown as a solid line.

5. CONCLUSIONS

The use of the unscented Kalman filter (UKF) for state esti-
mation in nonlinear/non-Gaussian models was considered.
It was shown that the moments required in the UKF recur-
sion can be accurately estimated with a reduced number of

sigma points for models in which only a subset of the ele-
ments of the state vector are subject to a nonlinear transfor-
mation in the process or measurement equations. The pro-
posed procedure was applied to smoothed state estimation
in a nonlinear model.

There are various topics for future research. It would
be of interest to determine the relationship of the proposed
procedure to the various existing implementations of the
unscented transformation. This would conceivably include
analysis of accuracy of the method relative to the existing
methods. A limitation of the proposed procedure is that the
sigma points for the nonlinearly transformed elements must
be selected according to the method originally proposed by
Julier et al., i.e., there must be 2n1 + 1 sigma points if there
are n1 nonlinearly transformed elements. It would be useful
to lift this restriction.
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