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ABSTRACT

We study particle filtering algorithms for tracking on infinite (in
practice, large) dimensional state spaces. Particle filtering (Monte
carlo sampling) from a large dimensional system noise distribution
is computationally expensive. But, in most large dim tracking ap-
plications, it is fair to assume that “most of the state change” oc-
curs in a small dimensional basis and the basis itself may be slowly
time varying (approximated as piecewise constant). We have pro-
posed a PF algorithm with basis change detection and re-estimation
steps that uses this idea. The implicit assumptions in defining this
algorithm are very strong. We study here the implications of weaker
assumptions and how to handle them. We propose to use a simple
modification of the asymptotically stable Adaptive Particle Filter to
handle errors in estimating the basis dimension.

1. INTRODUCTION

This paper is part-2 of a two part paper [1]. We propose particle
filtering (PF) [2, 3] algorithms for tracking on infinite (in practice,
large) dimensional state spaces. Tracking is defined as the prob-
lem of causally estimating a hidden state sequence, {Xt} (that is
Markovian), from a sequence of observations, {Yt} that satisfy the
HMM assumption (Xt → Yt is a Markov chain at each t). The
state space may not be a vector space, we assume it to be a sep-
arable metric space (Polish space). Particle filtering (PF) on large
dimensional state spaces is expensive. But in most large dim track-
ing applications, it is fair to assume that at any time t, “most of the
state change” occurs in a small dimensional “effective basis”, and
the basis dimension is either constant or slowly time varying (ap-
proximated as piecewise constant). In [1, 4], we have proposed an
efficient algorithm for the constant K-dim effective basis case. It
assumes that conditioned on Xt,s ∈ R

K and on Xt−1, the posterior
of Xt is unimodal. In [4], the algorithm was used to track deform-
ing object contours from image sequences (observation). We used
a 6-dim space of affine deformations as the effective basis for con-
tour deformation. But in certain other applications, such as in med-
ical imaging, this assumption may not hold, and there may be two
(or more) contours of interest at roughly the same “affine location”
(have same affine parameters). In other domains, there may not even
be a natural constant basis approximation that can be used.

To handle such applications, we consider a generalization of the
above assumption that allows the basis dimension for Xt,s to be
slowly time varying. The state space model is repeated in Section
2. In Section 3, we propose a modified PF algorithm that includes
a basis change detection and re-estimation step. Its application to
contour tracking is shown in Figure 1. We analyze the implicit as-
sumptions in defining this algorithm. In Section 4, we discuss how
they can be relaxed and propose an easy-to-implement modification
of the Adaptive Particle Filter [5] to handle errors in estimating the

basis dimension, K, which is a piecewise constant parameter. Ap-
plication to contour tracking and conclusions are given in Section
5.

The problem of tracking on large dim state spaces occurs in
many domains. It has been studied by many authors in the con-
text of tracking outer contours of deforming objects from image se-
quences [6, 7, 4, 8]. Another large dim tracking problem is estimat-
ing the spectro-temporal receptive fields which are time-frequency
plots (short time Fourier transform at a set of time instants) that char-
acterize the time varying input-output transfer function of auditory
neurons. An example STRF size is 15 × 13 = 195, even though
domain knowledge tells us that only a small part of it undergoes sig-
nificant changes for a given time period. A third possible application
is tracking optical flow. Optical flow [9], denoted u(x, y), v(x, y),
for an image at time t, It(x, y) gives the motion of every point x, y in
one frame interval, i.e. it is defined by It+1(x+u, y+v) = It(x, y).
Thus, Ct(x, y) = u(x, y), v(x, y) has a dimension which is twice
the size of the image, even though motion is highly correlated.

Note that the algorithms given in this work, are also applicable
to problems of time varying but finite dimensional state tracking. PF
for time varying state dimensions has been studied by many authors.
[10, 11] study algorithms for filtering clean speech from an observed
noisy speech signal which is modeled using an order-K AR model
whose coefficients as well as order are slowly time varying. In [10] a
slow time varying partial correlation model is proposed which mod-
els β size blocks of any time series, its partial correlation coefficient
vector (PARCOR) and the order (length of PARCOR) as the state
vector. It assumes the PARCOR vector is slow time varying and
hence estimates it sparsely (every few time instants) and interpolates
these samples to get the PARCOR vector at each t. This idea is sim-
ilar to our proposed interpolation of the velocity vector (see Section
2). Many techniques based on MCMC [12, 11] or Reversible Jump
MCMC[13] or treating model order as a discrete Markov chain [10]
have been proposed for model order selection in PF algorithms. Our
algorithm can also be used for tracking the shape of a time-varying
number, K, of landmarks (objects)[14].

2. STATE SPACE MODEL

We use the subscript t to denote the discrete time instants. p de-
notes probability density functions (pdfs). We briefly describe the
state space model detailed in [1]. Consider a state space model with
state Xt = [Ct, vt] where vt denotes the time “derivative” of Ct.
Assume that Ct = Ct(p) where p belongs to a compact subset of
R

n. Assume that Ct belongs to a Polish space S (a complete sep-
arable metric space). vt now denotes the time “derivative” of Ct

(defined in the corresponding tangent space at Ct, denoted T SCt ).
Thus vt belongs to a vector space. In implementing any algorithm
for infinite dim state spaces, the number of points at which Ct is
defined is always large but finite (and can change at every t). For
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example, if the parameter p ∈ [0, 1], Ct is defined at Mt points
p = 0, 1/Mt, ...1 at time t. Hence in the rest of this paper, we as-
sume that S is a large but finite dim space with dimension Mt at
time t. We split vt as vt = [vt,s, vt,r], where vt,s ∈ R

K denotes
the coefficients along the K basis directions representing the K-dim
subspace (Ss), in which “most of the state change” is assumed to
occur, and vt,r denotes the state change in the rest of the state space
(Sr) which is assumed “small”. The basis directions for Ss are de-
noted by Bs(p) = [b1(p), ..bK(p)] and the basis for Sr are denoted
by Br(p). We assume the following general form of the discrete
time state dynamics (with time discretization interval denoted as τ ):

Ct(p) = Ĉt(p) + g(Ĉt, Br(p)vt,r) (1)

Ĉt(p) = Ct−1(p) + τg(Ct−1, Bs(p)vt,s), Bs � B(Ct−1) (2)

vt,s = ft(τ, vt−1,s) + νt,s, νt,s ∼ pv,t,s(.) (3)

vt,r = νt,r, νt,r ∼ pv,t,r(.) (4)

g defines the mapping from T SCt−1 (tangent space at Ct−1) to
S. The dimension of Ss, K, can be fixed or slowly time varying
(modeled as piecewise constant). We have assumed a first order
Markov model on vt,s while vt,r = νv,t,r ∼ pv,t,r(.) is indepen-
dent over t, and so can be excluded from the state space. Thus,
in this paper we assume the state to be Xt = [Ct, vt,s]. The pdf
pv,t,r(.) is unimodal.Assume an observation model where the ob-
servations, Yt depend only on Ct, i.e. the observation likelihood,
p(Yt|Xt) = p(Yt|Ct) and where Ct → Yt is a Markov chain for
each t. The observation likelihood, p(Yt|Ct), obtained from above
model can, in general, be multimodal.
Example: Consider object contour tracking from image sequences
[15]: Ct(p), p ∈ [0, 1] denotes a parametrization of a 2D closed
contour, B(Ct−1)(p) = [b1(p), ..bK(p)] denotes the K B-spline
basis functions defined on the contour Ct−1, vt,s denotes the veloc-
ity of the K control points of the B-spline. g(C, Bv) = Bv N(C)
where N(C) denotes the normal to C. We use a linear Gauss-
Markov model for vt,s, i.e. ft(v) = Av, pv,t,s is a zero mean Gaus-
sian. Also, Yt is the image at t and p(Yt|Ct) ∝ e−Ecv(Yt,Ct) where
Ecv denotes the Chan-Vese energy[4]. We show results for contour
tracking using Algorithm 1 in Figure 1.

3. PARTICLE FILTER WITH TIME VARYING BASIS

The basic idea of PF with time-varying basis was introduced in [1].

Fact 1 Since S is a Polish space, ∀ ε > 0, any Ct ∈ S can be
approximated by a Ĉt = Ct−1+g(Ct−1, BKvs), s.t. d(Ct, Ĉt) < ε
by choosing K = K(ε, Ct, Ct−1) large enough and choosing vs =
vs(K, Ct, Ct−1) ∈ R

K .

Let us replace distance by average distance i.e. we look for one K
and one vs (depending on Ct−1) that works for all Ct on average.
Also, we consider a piecewise constant effective basis dimension,
i.e. the same K works for all Ct−1 ∈ S and for all t ∈ [T1, T2], i.e.

Assumption 1 Given a ∆∗ and a time interval [T1, T2], ∃ K =
K(∆∗, [T1, T2]) s.t. for every Ct−1 ∈ S and ∀t ∈ [T1, T2], ∃
vt,s = vt,s(K, Ct−1) so that ∆t = E[d(Ct, Ĉt)|Ct−1, vt,s] ≤ ∆∗.

In addition, we also need the assumptions discussed in [1] that en-
sure that p(Ct|Ct−1, vt,s, Yt), with vt,s belonging to the current K
dim basis, is “effectively” unimodal (it has only one mode with sig-
nificantly nonzero pdf value). Based on these assumptions, we mod-
ified Algorithm 1 in [1] to include a basis change detection step at

every t and a basis dimension estimation step whenever a change is
detected. The new algorithm is summarized in Algorithm 1. Basis
dimension change detection and new dimension estimation has be
application dependent, e.g. [15]. It has been discussed in [1].

Algorithm 1 Particle Filter with Time Varying Basis

1. At t = 0, for i = 1 to N , set C
(i)
0 = C0, sample v

(i)
0,s ∼

N (v0,s; 0, Σ0). Set X
(i)
0 = [C

(i)
0 , v

(i)
0,s]

2. At any t, assume that p(Xt−1|Y1:t−1) ≈∑N
i=1(1/N)δ(Xt−1 − X

(i)
t−1) is available.

3. Importance Sampling: For i = 1 to N ,

(a) Sample ν
(i)
t,s ∼ pv,t,s(.). Compute v

(i)
t,s using (3) and

Ĉ
(i)
t using (2).

(b) Compute m
(i)
t = arg maxCt∈S p(Yt|Ct)p(Ct|Ct−1, vt,s)

as explained in Section 3 of [1].

(c) Set C
(i)
t = m

(i)
t , since Σ ≈ 0 for large dim spaces [1].

Set X
(i)
t = [C

(i)
t , v

(i)
t,s]

4. Weighting : For i = 1 to N ,

(a) Set w̃
(i)
t = w̃

(i)
t−1

p(Yt|C(i)
t )p(C

(i)
t |C(i)

t−1,v
(i)
t,s)

N (m
(i)
t ;m

(i)
t ,Σ)

. Note de-

nominator is a constant (can be removed).

(b) Set w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

Now p(Xt|Y1:t) ≈
∑N

i=1(w
(i)
t )δ(Xt−X

(i)
t ), where δ is the

Dirac delta function

5. Detect Basis Change: Detect if basis change required. If yes,
then go to step 6, else go to step 7.

6. Change Basis: Compute the new basis dimension Knew. For
i = 1 to N ,

(a) Compute the new basis Bnew,i = BKnew (C
(i)
t ) and

old basis Bt,i = BK(C
(i)
t ).

(b) Project v
(i)
t,s into new basis as:

v
(i)
t,s ←− (BT

new,iBnew,i)
−1BT

new,iBt,iv
(i)
t,s.

(c) Set Kt ←− Knew, Bt,i ←− Bnew,i.

7. Resampling: For all i = 1 to N :

(a) Sample the index I(i) ∼ {i, w(i)
t }N

i=1

(b) Set X
(i)
t ←− X

(I(i))
t , w̃

(i)
t ←− 1, w

(i)
t ←− 1/N .

Now p(Xt|Y1:t) ≈
∑N

i=1(1/N)δ(Xt − X
(i)
t ).

8. Set t ←− t + 1, go to step 3

Implicit Assumptions: Algorithm 1 implicitly assumes the fol-
lowing: First, it assumes that there is no error in estimating the new
basis dimension. This is a very strong assumption. Another very
strong assumption is that there is zero delay in detecting the basis
change and also that there is no error in projecting v

(i)
t,s in the new

basis. Also, if at a basis change time, T1, the basis dimension is
reduced, it means that a certain part of the state space remains con-
stant during [T1, T2]. For example if the dimension reduces from K
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Fig. 1. Algorithm 1 for tracking through an occluding street light

to K−1, it means that posterior value of one component of vt,s (de-
noted (vt,s)K ) is approximately zero with zero variance or it means
that (vt,s)K is deterministically known conditioned on some other
component of vt,s and Y1:t. Both of these imply that the region
of Ct which is affected by (vt,s)K (denote this region by Ct(K))
remains constant during [T1, T2], except for small deterministic de-
formation introduced by mode finding. Summarizing, Algorithm 1
can be shown to converge, if in addition to the mixing assumptions
for the the state space model [16], the following hold:

Assumption 2 Assume that there is zero error in estimating the new
basis dimension.

Assumption 3 There is zero delay in detecting the need for basis
change and there is zero error in projecting v

(i)
t,s in the new basis.

Assumption 4 At t = T1, if the basis dimension reduces from K
to K − 1, then the posterior of (vt,s)K conditioned on the rest of
the components of vt,s, i.e. p((vt,s)K |Y1:t, (vt,s)1:K−1) has ei-
ther converged to a Dirac delta function at zero, δ((vt,s)K) or to
δ((vt,s)K − fdet((vt,s)1:K−1, Y1:t)) where fdet is some determin-
istic function of its arguments. Also, either of these imply that the
posterior of the region of Ct affected by (vt,s)K (denoted Ct(K))
has converged to a delta function too, i.e. it remains constant during
[T1, T2].

4. HANDLING WEAKER ASSUMPTIONS

Assume that assumption 2 does not hold and Knew is a random vari-
able with a prior distribution (that depends on Kold) at t = T1. If
one simply treated K as part of the state space, then the PF resam-
pling step will introduce the usual problems of resampling for static
parameters (loss of a good particle due to resampling, new particle
cannot be generated because no randomness) [5]. To avoid these
problems, we use a modification of the adaptive PF [5] for K.
Adaptive PF: In [5], the author defines an M particle Adaptive
Particle Filter (APF) (the standard particle filter without the resam-
pling step) for the unknown static parameter. For each particle of the
unknown static parameter, they run a regular PF for the rest of the
state space. Since there is no resampling between different static pa-
rameter particle sets, the weight, W̃ m

τ , of a static parameter particle
depends on several (q(M), where q(M) is an increasing function
of M ) past observations, i.e. W̃ m

τ =
∏τ

t=τ−q(M)+1

∑N/M
j=1 w̃m,j

t .
The two main assumptions required are: (i) the static parameter be-
longs to a compact set (its prior distribution has compact support)
and (ii) conditioned on the value of the parameter, the regular PF for
the rest of the state space is uniformly convergent. Under these main
assumptions, it has been proved [5] that for t large enough, the pos-
terior for the static parameter converges to a delta function at its true
value (or at a set of true values). Consequently, the estimated pos-
terior of the rest of the state space also converges to the true posterior.

Adaptive PF for K: Consider a weaker version of Assumption 2:

Assumption 5 Assume

1. The error in estimating the change in the new basis dimension
from the previous dimension is bounded, i.e. ∃ A < ∞ s.t.
|Knew − Kold| < A.

2. The Adaptive PF for K converges in finite time, denoted by
Tconv , to one or (in case of multiple targets) a finite number
of possible true values.

3. The time interval between two basis change times, i.e. the
duration T2 − T1 + 1, is larger than Tconv .

4. For any value of K, the PF for the rest of the state space is
uniformly convergent.

We treat K as a piecewise static parameter and run a simple modifi-
cation of the Adaptive PF for it (summarized in Algorithm 2). Given:
At a basis change time, t = T1, only M = 2 modes of K have
survived (corresponding to two observable targets), each with Nm,
m = 1, 2 particles (N1 +N2 = N ). (i) For each mode, estimate the
P new values of K (for e.g. K = Kold−1, Kold, Kold+1, P = 3).
(ii) “Split each PF into P parts”, i.e. resample {j, wm,j

t }Nm
j=1 Nm/P

times (instead of the usual Nm times) and allocate new particles ac-
cordingly. Thus, starting at t = T1, we run M ′ = M ∗ P PFs, each
with N ′

m = N�m/P�/P particles. (iii) For each PF, run the impor-
tance sampling and weighting steps, evaluate pm

y,t and the posterior

weight of the mth PF, W̃
(m)
t , and then resample within each PF.

If (t−T1) mod Tconv = 0 (APF convergence time), “eliminate
zero modes” and “re-allocate N to non-zero modes”. “Zero modes”
will be indices m whose posterior weight W

(m)
t is negligibly small.

Do this as follows: Sample M times from {m, W
(m)
t }M

m=1 and set
N ′

m=number of times index m gets sampled. Thus for all the “zero
modes”, N ′

m will be zero. Now “re-allocate N to non-zero modes”,
i.e. allocate N ′

m particles to the mth PF: resample N ′
m times from

{j, wm,j
t }Nm

j=1 (instead of the usual Nm times) and allocate new par-
ticles accordingly. We give the stepwise algorithm in Algorithm 2.

Delay in Detecting Basis Change: Now Assumption 3 that there
is no delay in detecting basis change is also unrealistic. A more
practical assumption is: There is a bounded delay in detecting the
new basis change and there can be error in re-estimating the new
velocity. Under this assumption, one cannot show convergence of
the particle filter, since there is a finite duration of system model er-
ror, whose effect can only go to zero asymptotically with time (if
at all). But one can modify the stability results of [14] (which are
based on the results of [16]) to show stability (asymptotic stability
under strong assumptions) of the total filtering error (system model
error plus particle filtering error), i.e. the total error at any t remains
bounded by a function of the initial error.

Non-Uniform Sampling: Until now, we have used uniform sam-
pling of an element of the tangent space of Ct, to generate a K dim
subspace. For example, for contour tracking, at the start of any ba-
sis change time, we allocate K B-spline knot locations, uniformly
on the contour and define velocity at the K control points (in be-
tween these knots) as the K dim subspace. These may become non-
uniformly spaced as the contour deforms. K is reduced when a set
of knots come very close to each other. In this case, Assumption 4
((vt,s)K converges to a deterministic function of (vt,s)1:K−1 when
basis dimension reduces) holds.
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Algorithm 2 Adaptive PF for K, with fixed particle budget N

t = T1, M PFs, each with Nm particles,
∑M

m=1 Nm = N .

1. Basis Change: For m = 1 to M do

(a) Detect need for basis change for mth PF

(b) If needed, evaluate P possible Knew values

(c) “Split” mth PF into P parts, i.e.: For j = 1 to Nm/P

do, Sample I(j) ∼ {j, wm,j
t }Nm

j=1 and set Zm,j
t ←−

Z
m,I(j)
t . Also, W̃

(m)
t ←− W̃

�m/P�
t

(d) New value of M is M ′ = M ∗ P and N ′
m =

N�m/P�
P

.

2. Regular PF with W
(m)
t Calc: For m = 1 to M do,

(a) Perform importance sampling and weighting (steps 3
and 4 of Algorithm 1) for all Nm particles.

(b) Compute pm
y,t =

∑Nm
j=1 w̃m,j

t , W̃
(m)
t =

W̃
(m)
t−1

pm
y,t

pm
y,t−q(M)

and W
(m)
t =

W̃
(m)
t∑M

k=1 W̃
(k)
t

(c) Resample Nm times from {j, wm,j
t }Nm

j=1 (step 7 of Al-
gorithm 1)

Now p(Xt|Y1:t) ≈
M∑

m=1

W
(m)
t

Nm∑

j=1

1

Nm
δ(Xt − Zm,j

t )

3. t ←− t + 1. If (t − T1) mod Tconv �= 0, go to step 2, else
eliminate “zero modes”:

(a) Sample M times from {m, W
(m)
t }M

m=1 and set
N ′

m=number of times index m gets sampled. For all
“zero modes”, N ′

m will be zero. Thus new value of M
is M ′=number of non-zero modes.

(b) “Re-allocate N to non-zero modes”:
For m = 1 to M ′ do,
For j = 1 to N ′

m do, Sample I(j) ∼ {j, wm,j
t }Nm

j=1

and assign Zm,j
t ←− Z

m,I(j)
t .

(c) Go to step 1.

But to make the algorithm more efficient, one could assume a
non-uniform sampling, for e.g. use prior information to allocate
knots only in regions where deformation is known to occur. This
will introduce more static parameters (to decide where to sample the
state vector) into the system model. Also, with this sampling, As-
sumption 4 may not hold. In principle, both these situations can be
handled by using an Adaptive PF for the sampling locations and for
Ct(K). Ct(K) is also like a piecewise static parameter with prior
given by its posterior at the beginning of the interval. We will ad-
dress this as part of future work.

5. CONCLUSIONS AND APPLICATIONS

This paper is part-2 of [1]. We have presented algorithms for track-
ing on infinite (or large) dimensional state spaces, whose effective
basis dimension is assumed to be piecewise constant with time and
small. The above assumption allowed us to define a particle filter
with a small dimensional effective basis at any time. It required
Monte Carlo sampling from only this small dim space and is practi-

cally implementable. We studied the implicit assumptions in defin-
ing this algorithm and how to relax them. We handle errors in the
basis dimension, K, by treating it as a piecewise static parameter
and using the Adaptive PF (APF) [5] for K during each time inter-
val. We have modified the original APF algorithm by resampling it
every Tconv time instants. By letting the duration between two basis
change times be larger than Tconv , we ensure that we resample at
least once between two basis change times. This prevents the num-
ber of particles or the number of APF modes from blowing up. The
above algorithm was originally motivated by the problem of contour
tracking (explained in Section 2). We show an example of contour
tracking using Algorithm 1 in Figure 1.
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