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ABSTRACT

We propose particle filtering algorithms for tracking on infinite (or
large) dimensional state spaces. We consider the general case where
state space may not be a vector space, we assume it to be a separa-
ble metric space (Polish space). In implementation, any such space
is approximated by a finite but large dimensional vector, whose di-
mension may vary at every time. Monte carlo sampling from a large
dimensional system noise distribution is computationally expensive.
Also, the number of particles required for accurate particle filtering
increases with the number of independent dimensions of the system
noise, making particle filtering even more expensive. But as long as
the number of independent system noise dimensions is small, even if
the total state space dimension is very large, a particle filtering algo-
rithm can be implemented. In most large dim applications, it is fair to
assume that “most of the state change” occurs in a small dimensional
basis, which may be fixed or slowly time varying (approximated as
piecewise constant). We use this assumption to propose efficient PF
algorithms. These are analyzed and extended in [1].

1. INTRODUCTION

We propose practically implementable particle filtering [2, 3] algo-
rithms for tracking on infinite (or large) dimensional state spaces.
Tracking is the problem of causally estimating a hidden state se-
quence, {Xt} (that is Markovian with state transition pdf p(Xt|Xt−1)),
from a sequence of observations, {Yt}, that satisfy the Hidden Markov
Model (HMM) assumption (Xt → Yt is a Markov chain for each
t, with observation likelihood denoted p(Yt|Xt)). Some examples
of applications where large dim state spaces occur are (i) tracking
the boundary (contour) of deforming objects in image sequences
(e.g. space sequences such as consecutive slices in medical imag-
ing or time sequences), whose dimension, in the worst case, may
be as large as that of the image (space filling curve); (ii) tracking
the Spectro-Temporal Receptive Fields (STRFs) [4] which are time-
frequency plots used to characterize the time varying input-output
transfer function of the auditory neuron in [4], a typical STRF di-
mension is 15 × 13 = 195; or (iii) tracking optical flow [5] as a
function of time. Optical flow, for an image at time t, It(x, y) gives
the motion of every point x, y during one frame time. Its dimension
is twice the image dimension. But in all these cases, at any time t, the
number of dimensions in which most of the change (contour defor-
mation or STRF intensity change or optical flow magnitude change)
occurs is much smaller.

The problem of tracking on large dim state spaces has been stud-
ied by many researchers in the context of contour tracking, [6, 7,
8, 9]. Many of these tracking algorithms, e.g. the ones given in
[7, 10], can be understood as approximate “posterior mode track-
ers” for a state space model following the HMM assumptions.They
approximate the posterior, p(Xt|Y1:t), as a Dirac delta function at

its largest mode, i.e. p(Xt|Y1:t) ≈ δ(Xt − mt) where mt =
arg max

Xt

p(Xt|Y1:t) = arg max
Xt

p(Yt, Xt|Y1:t−1) (the largest mode

mt of p(Xt|Y1:t) is also the global maximizer of p(Yt, Xt|Y1:t−1)).
p(Yt, Xt|Y1:t−1) is evaluated using Bayes recursion and the delta
function approximation of p(Xt−1|Y1:t−1) as:

p(Yt, Xt|Y1:t−1) =

∫
xt−1

p(Yt|Xt)p(Xt|xt−1)p(xt−1|Y1:t−1)dxt−1 ≈

p(Yt|Xt)p(Xt|Xt−1 = mt−1). Thus mt is evaluated as

mt = arg max
Xt

p(Yt|Xt)p(Xt|Xt−1 = mt−1)

This maximizer is typically found by starting with Xt = mt−1 as
initial guess and running “some” iterations of gradient descent to
minimize − log p(Yt|Xt). The implicit assumption in doing this is
that p∗ � p(Xt|Xt−1, Yt), has a single local maximizer (is uni-
modal). If p(Yt|Xt) is multimodal (e.g. contours of multiple moving
objects in the image, or presence of spurious edges or large intensity
variations resulting in temporary false modes), p∗ will be unimodal
only if the spread of p(Xt|Xt−1) is small enough. For large dim
state spaces, this may not hold. When p∗ is not unimodal, it is not
clear how to find the global maximizer. Also, one would like to track
all the “significant” modes, not just the largest mode.

But, in applications involving tracking on large dim state spaces,
it is fair to assume that conditioned on a small part of the current
state, denoted Xt,s, the above, i.e. p(Xt|Xt−1, Xt,s, Yt), is uni-
modal. This, as we discuss in Section 3, follows from the assumption
that in most large dim tracking applications, at a given time, “most of
the state change” occurs in a small dim basis. For many applications,
this small dim basis can be assumed to be fixed and known. The con-
tour tracking algorithm of [8] can be understood as one application
of this idea. There we chose Xt,s to be the 6-dim space of affine
deformations - which approximates a global deformation model for
the contour - and we used a particle filter to track Xt,s. Conditioned
on Xt,s and Yt (image at t), the non-affine deformation can be as-
sumed to be unimodal - this assumption is valid in many problems
of object tracking, since typically multiple contours are separated by
translation or scale. So, we used a posterior mode tracker for track-
ing the non-affine deformation. This idea as we explain later, can be
understood as a modification of the algorithm of [13]. But in certain
other applications, such as in medical imaging, there may be two
(or more) contours of interest at roughly the same “affine location”.
In other applications such as the STRF tracking problem, there may
not be a single constant basis (like affine basis for contour tracking)
where most of the state change occurs. To handle such applications,
we consider a generalization of the above assumption that allows the
dimension of Xt,s to be slow time varying.

We present particle filtering algorithms for tracking on large dim
state spaces based on the above ideas. Our algorithm is an efficient
importance sampling technique that can also be applied to reduce
complexity of smaller dim tracking problems as long as they satisfy
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Assumptions 2 and 3. The general form of the state space model
is explained in Section 2. The algorithm for fixed and known ba-
sis is given in Section 3. The algorithm for time varying basis is
introduced in Section 4, more details are given in [1]. Design is-
sues, application to contour tracking and conclusions are discussed
in Section 5.

2. STATE SPACE MODEL

State Space: We use the subscript t to denote the discrete time in-
stants. Consider a state space model with state Xt = [Ct, vt] where
vt denotes the time “derivative” of Ct. Ct can be a large finite dim
vector, or an infinite dim vector, Ct = Ct(p), p ∈ [a, b]. Or Ct(p)
can itself be a finite dim vector (e.g. Ct(p) = [Cx

t (p), Cy
t (p)]T

with p ∈ [a, b]). Also, Ct may not even lie in a vector space (e.g.
[Cx

t (p), Cy
t (p)]T may denote one parametrization of a contour [11]).

Also, p can itself belong to a compact subset of R
2 or R

3 etc (e.g. op-
tical flow, Ct(x, y) = [u(x, y), v(x, y)]T , x ∈ [0, a], y ∈ [0, b]).
Thus to incorporate all these cases, assume that Ct = Ct(p), with
p belonging to a compact subset of R

n. Assume that Ct belongs to
a Polish space S (a complete separable metric space) with distance
metric d. vt now denotes the time “derivative” of Ct (defined in the
corresponding tangent space at Ct, denoted T SCt ). Thus vt belongs
to a vector space.

In implementing any algorithm for infinite dim state spaces, the
number of points at which Ct is defined is always large but finite (and
can change at every t). For example, if the parameter p ∈ [0, 1], Ct

is defined at Mt points p = 0, 1/Mt, ...1 at time t. Hence in the rest
of this paper, we assume that S is a large but finite dim space with
dimension Mt at time t.
State Dynamics (System Model): We split vt as vt = [vt,s, vt,r],
where vt,s ∈ R

K denotes the coefficients along the K basis direc-
tions representing the K-dim subspace (Ss), in which “most of the
state change” is assumed to occur, and vt,r denotes the state change
in the rest of the state space (Sr) which is assumed “small”. The
basis directions for Ss are denoted by Bs(p) = [b1(p), ..bK(p)] and
the basis for Sr are denoted by Br(p). The basis directions can be a
function of the previous state Ct−1. Their dimension can also vary
with t (piecewise constant with t). But to simplify notation, we do
not use the subscript t with Bs.

We assume the following general form of the discrete time state
dynamics (with time discretization interval denoted as τ ):

Ct(p) = Ĉt(p) + g(Ĉt, Br(p)vt,r) (1)

Ĉt(p) = Ct−1(p) + τg(Ct−1, Bs(p)vt,s), Bs � B(Ct−1) (2)

vt,s = ft(τ, vt−1,s) + νt,s, νt,s ∼ pv,t,s(.) (3)

vt,r = νt,r, νt,r ∼ pv,t,r(.) (4)

g defines the mapping from T SCt−1 (tangent space at Ct−1) to S.
For e.g., if C is a planar contour [11], g(C, v(p)) = v(p) N(C(p))
where N(C(p)) denotes the normal to C at point C(p). For this
application, Bs can be a K=6-dim basis for affine deformation as
in [8] or it can be a K-dim B-spline basis for interpolating contour
velocity at K control points as in [12].

The dimension of Ss, K, can be fixed or slowly time vary-
ing (modeled as piecewise constant). The system noise sequences
{νv,t,s, νv,t,r} are independent of each other and over time. We
have assumed a first order Markov model on vt,s while vt,r = νv,t,r ∼
pv,t,r(.) is independent over t, and so can be excluded from the state
space. Thus, in this paper we assume the state to be Xt = [Ct, vt,s].
The pdf pv,t,r(.) is unimodal.

Observation Model: Assume an observation model where the ob-
servations, Yt depend only on Ct, i.e. the observation likelihood,
p(Yt|Xt) = p(Yt|Ct) and where Ct → Yt is a Markov chain for
each t. The observation likelihood, p(Yt|Ct), obtained from above
model can, in general, be multimodal (e.g. multiple target tracking
problems or problems where multiple false target modes may get
generated due to sensor error or background clutter).

3. CONSTANT FINITE-DIM BASIS

We assume here that Ss is constant for all t. For many applications,
such as the contour tracking problems shown in [8] (where Ss is
taken to be the 6-dim basis of affine deformation), this assumption
suffices. We have considered extensions of the algorithms proposed
here to time-varying basis in Section 4 and [1].

The optimal importance sampling (IS) distribution (one that min-
imizes the variance of weights w

(i)
t conditioned on particles x

(i)
1:t−1

and past observations Y1:t−1) for particle filtering has been shown
to be p∗ � p(Xt|Xt−1, Yt) in [13] and other works. But this can-
not be evaluated analytically for most state space models. In [13],
the authors suggest approximating p∗ by a Gaussian about its mode,
when it is unimodal. When p(Yt|Xt) is multimodal, p∗ will be uni-
modal only if the spread of p(Xt|Xt−1) is small. For a large dim
state space, the spread of p(Xt|Xt−1) may not be small enough in
all dimensions to ensure unimodality of p∗ and hence the algorithm
of [13] cannot be used. But if the change in the “rest of the state
space”, Sr , is “small enough” (quantified in Assumption 3), then,
p∗∗ � p(Xt|Xt−1, vt,s, Yt) = p(Ct|Ĉt, Yt) can be shown to be
unimodal. Under this assumption, we propose the following modi-
fication to the algorithm of [13]: For each particle i, (i) sample v

(i)
t,s

from its state transition pdf, p(vt,s|v(i)
t−1,s) (defined by (3)), in order

to sample possible multiple modes of Xt, and (ii) sample C
(i)
t from

a Gaussian approximation to p∗∗ about its mode (denoted m
(i)
t ). The

Gaussian approximation of p∗∗ is denoted N (Ct; m
(i)
t , Σ(i)), where

the mode, m
(i)
t = mt(C

(i)
t−1, v

(i)
t,s, Yt), is obtained as

m
(i)
t = arg min

Ct

L(Ct)�− log p∗∗ + const

=− log p(Yt|Ct) − log p(Ct|Ĉ(i)
t ) + const. (5)

The Mt × Mt covariance matrix, Σ(i), can be chosen as suggested
in [13] to be Σ(i) = L′′(m(i)

t ). In summary, we propose to use as
importance sampling density:

q(Xt|X(i)
t−1, Yt) = p(vt,s|v(i)

t−1,s)N (Ct; m
(i)
t , Σ(i)) (6)

Note that when S is not a vector space, we use N (Ct; mt, Σ) to
denote the following sampling scheme: Sample vt ∼ N (0, Σ) and
compute Ct = mt +τg(mt, Brvt). The stepwise algorithm is sum-
marized in Algorithm 1. We now discuss sufficient conditions under
which p∗∗ will be unimodal.

Sufficient Conditions for Unimodality of p∗∗

Assumption 1 To simplify the derivation below, assume pv,t,r(vt,r) =
N (vt,r; 0, Σr) with Σr = ∆ I , i.e. the change in Sr is spatially i.i.d.
Gaussian distributed with variance ∆. The derivation can be easily
generalized to any unimodal pdf.

Define DΣ(C2, C1) as1

DΣ(C2, C1)�vT
r Σ−1vr, vr � BT

r g−1(C1, C2 − C1) (7)

1If Σ is singular, Σ−1 denotes the pseudo-inverse.
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Algorithm 1 Particle Filter with Efficient Importance Sampling

1. At t = 0, for i = 1 to N , set C
(i)
0 = C0, sample v

(i)
0,s ∼

N (v0,s; 0, Σ0). Set X
(i)
0 = [C

(i)
0 , v

(i)
0,s]

2. At any t, assume that p(Xt−1|Y1:t−1) ≈∑N
i=1(1/N)δ(Xt−1 − X

(i)
t−1) is available.

3. Importance Sampling: For i = 1 to N ,

(a) Sample ν
(i)
t,s ∼ pv,t,s(.). Compute v

(i)
t,s using (3) and

Ĉ
(i)
t using (2).

(b) Compute m
(i)
t defined in (5).

(c) If Σ ≈ 0 is valid, set C(i)
t = m

(i)
t , else sample Ct(i) ∼

N (Ct; m
(i)
t , Σ).

(d) Set X
(i)
t = [C

(i)
t , v

(i)
t,s]

4. Weighting : For i = 1 to N ,

(a) If Σ ≈ 0 is valid, w̃
(i)
t =

w̃
(i)
t−1p(Yt|C(i)

t )p(C
(i)
t |C(i)

t−1, v
(i)
t,s), else w̃

(i)
t =

w̃
(i)
t−1

p(Yt|C(i)
t )p(C

(i)
t |C(i)

t−1,v
(i)
t,s)

N (C
(i)
t ;m

(i)
t ,Σ)

.

(b) Set w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

Now p(Xt|Y1:t) ≈
∑N

i=1(w
(i)
t )δ(Xt − X

(i)
t )

5. Resampling: For all i = 1 to N :

(a) Sample the index I(i) ∼ {i, w(i)
t }N

i=1.

(b) Set X
(i)
t ←− X

(I(i))
t , w̃

(i)
t ←− 1, w

(i)
t ←− 1/N .

Now p(Xt|Y1:t) ≈
∑N

i=1(1/N)δ(Xt − X
(i)
t ).

6. Set t ←− t + 1, go to step 3

Then, since Σr = ∆ I ,

p(Ct|Ĉt) = pv,t,r(B
T
r g−1(Ĉt, Ct − Ĉt)) ∝ exp [−DI(Ct, Ĉt)

2∆
].(8)

Thus

L(Ct) = E(Ct) +
DI(Ct, Ĉt)

2∆
, E(Ct) � − log p(Yt|Ct) (9)

Assumption 2 Assume

1. E(Ct) and DI(Ct, Ĉt) are continuously differentiable func-
tions of Ct.

2. DΣ is a strictly convex function of Ct.

3. E is Lipschitz continuous everywhere.

4. Ĉt lies in a region where E is locally convex, i.e. the Hessian
E′′(Ĉt) > 0 (positive definite).

Definition 1 (Region R) Denote by C∗
min the minimizer of E whose

distance DI(C
∗
min, Ĉt) from Ĉt is the least among all minimizers

of E. Define the region R as the largest continuous region around
C∗

min that contains Ĉt and where E is locally convex, i.e. the Hes-
sian E′′(Ct) ≥ 0 (positive definite).

Fact 1 With Assumption 2, the region R always exists and L(Ct)
is strictly convex inside R. Also, the minimizer of L inside R, m,
satisfies E(C∗

min) ≤ E(m) ≤ E(Ĉt).

Now if we can assume that, there is no extremum point of L outside
R (denoted Rc), then m will be the only minimizer of L (i.e. p∗∗

will be unimodal). A sufficient condition for this is that for every
C ∈ Rc, there exists some p for which (∇CL)(p) = (∇CE)(p) +
(∇CDI)(p)/2∆ 
= 0. The only places where (∇CL)(p) can equal
0 for all p, will be in regions where (∇CE)(p) and (∇CDI)(p)
differ in sign for all p, i.e. (∇CE)(p)(∇CDI)(p) < 0, ∀p. But if
∆ is such that it is strictly smaller than maxp

|(∇CDI )(p)|
|(∇CE)(p)| for all C

in these regions, then (∇CL)(p) will never be zero for all p in these
regions.

Assumption 3 Let A � {C ∈ Rc : (∇CE)(p)(∇CDI)(p) <
0, ∀p}. Assume

∆ < min
C∈A

max
p

|(∇CDI)(p)|
|(∇CE)(p)| � ∆∗ (10)

Fact 2 By assumption 2, ∆∗ is strictly positive. If assumptions 1, 2
and 3 are true, then L has a single minimizer, denoted by m, which
lies inside R. Equivalently p∗∗ = p(Ct|Ĉt, Yt) ∝ p(Yt, Ct|Ĉt) =
e−L is unimodal.

Practical choice of Σ in (6) for Large Dim State Spaces: Since
conditioning reduces average variance,
E[Covar[p(Ct|Ĉt, Yt)]] ≤ Covar[p(Ct|Ĉt)] = ∆ I ≤ ∆∗I . But
Σ ≈ Covar[p(Ct|Ĉt, Yt)]. Thus in situations where ∆∗ is small,
the average (taken over Yt) eigenvalues of Σ will be still smaller.
Also, it is observed that the value of ∆∗ decreases as the dimension
Mt increases (for fixed K). This happens because the minimization
in (10) will be performed over a larger dim space. Thus for large
Mt, the approximation Σ ≈ 0 is valid. When Mt is large, impor-
tance sampling from N (Ct; mt, Σ) is approximately equivalent to
deterministically setting the particle C

(i)
t = m(C

(i)
t−1, v

(i)
t,s, Yt).

Evaluating/Approximating the mode of p∗∗: If assumptions 2
and 3 hold, p∗∗ is unimodal. Also, by Fact 1, its mode, m =

m(Ct−1, vt,s, Yt), satisfies E(C∗
min) ≤ E(m) ≤ E(Ĉt). Thus,

by starting with Ct = Ĉt as initial guess and running gradient de-
scent to minimize E, there will always be an iteration number k for
which Ct = m, if the iteration scaling is small enough. Thus, an
efficient way to evaluate m is to start with Ct = Ĉt as initial guess
and to run k iterations of gradient descent to minimize E. In most
practical applications, it is not possible to evaluate k. But as demon-
strated in the experiments of [8], a heuristic choice often suffices to
give an approximation to the mode.

4. TIME VARYING BASIS

As discussed earlier, the assumption of a fixed basis is restrictive in
certain situations. Here we attempt to relax it with that of a piecewise
constant with time basis.

Fact 3 Since S is a Polish space, by definition: ∀ ε > 0, for any
Ct, Ct−1 ∈ S , ∃ K = K(ε, Ct, Ct−1) large enough and vs =

vs(K, Ct, Ct−1) ∈ R
K , s.t. d(Ct, Ĉt) < ε, where Ĉt = Ct−1 +

g(Ct−1, BKvs). BK is a K-dim basis for any countable dense sub-
set of T SCt−1 .
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Now let us replace distance by average distance i.e. we look for one
K and one vs (depending on Ct−1) that works for all Ct on average.
Also, we consider a piecewise constant effective basis dimension,
i.e. the same K works for all Ct−1 ∈ S and for all t ∈ [T1, T2], i.e.

Assumption 4 Given a ∆∗ and a time interval [T1, T2], ∃ K =
K(∆∗, [T1, T2]) s.t. for every Ct−1 ∈ S and ∀t ∈ [T1, T2], ∃
vt,s = vt,s(K, Ct−1) s.t.
E[d(Ct, Ct−1 + g(Ct−1, BKvt,s))|Ct−1, vt,s] ≤ ∆∗.

In addition, we also need the assumptions discussed in the above sec-
tion that ensure that p(Ct|Ct−1, vt,s, Yt) is unimodal. Under these
assumptions, one can modify Algorithm 1, to include a basis change
detection step at every t and a basis dimension estimation step when-
ever a change is detected. Also, when the basis dimension changes,
the velocity from the previous time step needs to be re-evaluated in
the new basis. The stepwise algorithm is given and analyzed in [1].

5. DESIGN ISSUES, APPLICATIONS AND CONCLUSIONS

Basis Choices and Dimension Estimation: We would like to de-
fine a K dim basis to approximate an element of the tangent space
of an element of an infinite dim Polish space. The tangent space
element is an infinite dim vector. This can be also be understood
as a way of sampling a continuous function at K points to define
a K-dim subspace. Some possible choices are: Fourier basis (uni-
formly discretizes the Fourier transform of the function), B-spline
basis (provides a piecewise polynomial approximation that is local
in space) or the wavelet basis (local in both time and frequency).
Any of these can be used to either uniformly discretize an element
of T SCt−1 which is the tangent space to S at Ct−1 or it can be used
to uniformly discretize an element of the vector space that embeds
S. In the second case, the interpolated velocity needs to be projected
into T SCt−1 (which is a subspace of the embedding vector space).

The basis dimension should be chosen to guarantee a certain
spatial resolution for the change in Ct and needs to increase when
the “spatial frequency content” in the “change of Ct” increases. The
specific rules need to be application dependent though. But since
spatial frequency in “change of Ct” cannot be measured (without
tracking the complete vt), heuristics/prior knowledge can be used.

Basis Change Detection: Detecting the need to change ba-
sis will also be very application dependent. Some ways to detect a
need to change basis are: (i) when expected posterior distance of the
current Ct from a reference state Cref ) exceeds a threshold, or (ii)
when tracking error of the observation increases, or (iii) when local
tracking error for certain parts of the observation vector increases or
(iv) simply change basis at fixed time intervals.

Application to Contour Tracking: In [8], we used Algorithm
1 for contour tracking. We show results for tracking a moving and
deforming fish in Figure 1. The fixed dim basis was a 6-dim affine
basis for contour deformation. Thus B(Ct−1)(p) was

Bt = NT

[
Cx

t−1(p)Cy
t−1(p) 0 0 10

0 0 Cx
t−1(p)Cy

t−1(p)01

]

and g(Ct−1, Btvt,s)(p) = Bt(p)vt,s N where N = N(Ct−1(p))
denotes the normal to Ct−1 at Ct−1(p). The observation, Yt, was
the image at time t, the energy functional, E was the Chan-and-Vese
energy and this satisfies E′′(C) > 0 in the neighborhood of a mini-
mizer, as long as the spatial image gradient is non-zero. If different
object contours in an image are sufficiently separated by affine pa-
rameters (e.g. translation or scale), the minimizers of E are located
far apart. The practical implication of assumptions on d is: choose

19 22 29

(a) Occlusion starting (b) Recovered (c) Deformation

Fig. 1. Tracking a deforming fish through partial occlusions

a continuously differentiable and strictly convex distance function d
and then ensure that K is large enough so that expected value of this
distance is “small”.

Conclusions: We have proposed two practically implementable
PF algorithms for tracking on infinite (or large) dim state spaces. The
first assumes that there exists a known and constant finite dim basis
in which most of the state change occurs. The second algorithm
allows this basis to be slowly time varying (piecewise constant). We
discuss the implicit assumptions in defining this algorithm and how
they can be relaxed in [1]. Also, note that Algorithm 1 suggests an
efficient importance sampling strategy (a generalization of [13]) that
can be used whenever Assumptions 2 and 3 are satisfied (even if the
state space dimension is finite and small). It can also be understood
as an approximate Rao-Blackwellization [14] technique.
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