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ABSTRACT

The problem of tracking the frequency and complex amplitude of
a frequency-hopped complex sinusoid is considered, using a novel
stochastic state-space formulation and particle filtering tools. The
problem is of considerable interest for interference mitigation in
frequency-hopped wireless networks, and in military communica-
tions. The proposed particle filtering approach has a number of
desirable features. It affords high-resolution estimates of carrier
frequency and hop timing, manageable complexity (linear in the
number of processed samples), and flexibility in tracking signals
with irregular hopping patterns due to intentional timing jitter. The
proposed state-space model is not only parsimonious, but fortu-
itous as well: it turns out that the associated optimal importance
function can be computed in closed form, and thus samples from
it can be drawn using rejection techniques. Both prior and opti-
mal importance sampling versions are developed and illustrated in
pertinent simulations.

Keywords: Frequency hopping, spectral analysis, estimation
of time-varying line spectra, sequential importance sampling, par-
ticle filtering

1. INTRODUCTION

Tracking the frequency of a time-varying complex sinusoid is an
important problem which arises in numerous applications. In speech
processing, for example, one is often interested in tracking formant
frequencies. In wireless communications, it arises in the context of
frequency hopping, when the receiver has no prior knowledge of
the hopping pattern, or is simply out of sync with the transmitter’s
hopping pattern generator [2, 8, 6, 7].

Both non-parametric time-frequency analysis, and paramet-
ric techniques have been developed for the more general prob-
lem of tracking a time-varying sinusoid, and can be applied to the
problem of tracking a frequency-hopped sinusoid as well. How-
ever, existing methods have limitations, especially when used to
track a frequency-hopped signal. Non-parametric methods, like
the spectrogram, or coarse channelization [2] suffer from limited
frequency- and temporal-resolution due to leakage. It is possible
to employ time-frequency distributions that are better-adapted to
frequency hopping [3], but the results are still not very satisfac-
tory. Parametric methods for frequency hopping explicitly model
the frequency as piecewise-constant, assume a “budget” on the
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number of hops within a given observation interval, and employ
dynamic programming to track the sought frequency and complex
amplitude parameters [6, 7]. Other than an upper bound on the
number of hops, the methods in [6, 7] do not assume anything else
about the frequencies or complex amplitudes, which are treated as
deterministic unknowns.

A different viewpoint is adopted in this paper. A stochas-
tic non-linear, non-Gaussian state-space formulation is proposed,
which captures frequency hopping dynamics in a probabilistic sense.
The proposed formulation is naturally well-suited for the applica-
tion of particle filtering for state estimation. Compared to the prior
state-of-art in [6, 7], the new approach has a number of desirable
features:

• Computational complexity: The complexity of particle fil-
tering is O(NT ), where N is the number of particles and T is
the number of temporal samples. The complexity of dynamic pro-
gramming, on the other hand, is roughly O(T 4). This means that
only short segments can be processed by dynamic programming,
and then one has to rely on hop periodicity to segment the rest of
the data. This has two disadvantages: first, the more samples are
processed the better from an estimation performance perspective;
second, hop timing is often intentionally randomized as a counter-
measure.

• Flexibility: The state-space model in the particle filtering
formulation can be easily tailored to match a given scenario (e.g.,
spread bandwidth and modulation).

The proposed state-space model is simple and fortuitous: the
associated optimal importance function can be computed in closed
form, and thus samples from it can be drawn using rejection tech-
niques. Both prior and optimal importance sampling versions are
developed and compared in pertinent simulations.

2. DATA MODEL AND PROBLEM STATEMENT

We propose the following non-linear non-Gaussian stochastic state-
space model of a frequency-hopped complex sinusoid. Let xk :=
[ωk, Ak]T denote the state at time k, where ωk ∈ [−π, π) and
Ak ∈ C denote instantaneous frequency and complex amplitude.
Let uk := [bk, ω̃k, Ãk]T denote an auxiliary sequence of indepen-
dent and identically distributed (i.i.d.) vectors with independent
components and the following marginal statistics: bk is a binary
random variable with Pr(bk = 1) = h; ω̃k is uniformly dis-
tributed over [−π, π), denoted U([−π, π)); and Ãk is CN (0, σ2

A),
i.e., complex circular Gaussian of variance σ2

A. Then

xk = f(xk−1,uk) =

�
xk−1 ,uk(1) = 0

[uk(2), uk(3)]T ,uk(1) = 1
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=

�
xk−1 , w.p. 1 − h�U ([−π, π)) , CN (0, σ2

A)
�T

, w.p. h
,

yk = xk(2)ejxk(1)k + vk,

where vk denotes i.i.d. CN (0, σ2
n) measurement noise, and uk(1)

the hop variable.
The above state-space formulation models frequency hopping

in a probabilistic fashion. Hops are random, i.i.d., with hop proba-
bility h per sample interval. This is different from traditional mod-
els of frequency hopping, which assume that the frequency hops
periodically, and is motivated by the following considerations:

• In military communications, intentional jitter is often intro-
duced in the hop timing in order to reduce the probability
of detection by unintended receivers and improve immunity
to jamming. Timing jitter yields a pseudo-random quasi-
periodic, or even seemingly aperiodic hop timing sequence.

• The above probabilistic model captures information about
the average hop rate in a “soft” ensemble sense: the ex-
pected number of hops over a long observation interval T is
hT . While less accurate if the exact hop period is known,
probabilistic modeling is more robust with respect to hop
period inaccuracies. Finally,

• The proposed probabilistic model is ideally suited for on-
line sequential estimation via particle filtering.

It is worth elaborating on some of the implicit assumptions of
the proposed state-space model.

1. When the (discrete-time, baseband-equivalent) frequency
hops, it hops anywhere within [−π, π) with a uniform den-
sity. This is well-suited for carrier hopping, which is usu-
ally discontinuous. Modulation-induced variations can (and
should) be neglected when the objective is to estimate car-
rier frequency, but could also be explicitly modeled using,
e.g., a smooth auto-regressive frequency variation model
in-between hops, in lieu of the simplified constant model
postulated above. This extension is relatively simple.

2. When the frequency hops, the complex amplitude also changes
according to an i.i.d. complex Gaussian distribution. This is
also well-motivated for carrier hopping, for every time the
carrier frequency hops beyond the coherence bandwidth of
the channel, a new channel realization is encountered.

The problem, then, can be stated as follows: Given a sequence
of observations {yk}T

k=1, estimate the sequence of system states
{xk}T

k=1 - that is, the unknown carrier frequencies and complex
amplitudes.

3. PARTICLE FILTERING SOLUTIONS

Particle filtering has emerged as an important sequential state esti-
mation method for stochastic non-linear and/or non-Gaussian state-
space models, for which it provides a powerful alternative to the
commonly used extended Kalman filter. See [1, 5] for recent tuto-
rial overviews. In particle filtering, continuous distributions are ap-
proximated by discrete random measures, comprising “particles”
and associated weights. That is, a certain continuous distribution
of interest, say p(x), is approximated as

p(x) ≈
N�

n=1

wnδ(x − xn),

where δ(·) denotes the Dirac delta functional. A useful simplifi-
cation stemming from this approximation is that the computation
of pertinent expectations and conditional probabilities reduces to
summation, as opposed to integration. While this can also be ac-
complished via direct discretization over a fixed grid, the use of
a random measure affords flexibility in adapting the particle loca-
tions to better fit the distribution of interest.

3.1. Basics of particle filtering

If we aim for an on-line filtering algorithm, in which the state at
time k should be estimated from measurements up to and includ-
ing time k, the key distribution of interest is the posterior den-

sity p
�
xk | {yl}k

l=1

�
. Given this density, one can estimate the

state at time k, e.g., via the associated (posterior) mean, or mode.
The basic idea of particle filtering, then, is to begin with a ran-
dom measure approximation of the initial state distribution, and,
as measurements become available, derive updated random mea-

sure approximations of p
�
xk | {yl}k

l=1

�
, k ∈ {1, 2, · · · }. That

is, we seek random measure approximations

p̂
�
xk | {yl}k

l=1

�
=

N�
n=1

wn,kδ(xk − xn,k)

In particle filtering, the updates - the derivation of p̂
�
xk | {yl}k

l=1

�

from p̂
�
xk−1 | {yl}k−1

l=1

�
- are based on the Bayes rule [1, 5].

A random measure approximation comprises two components:
the particles (locations) and the associated weights. If we could

sample from the sought posterior p
�
xk | {yl}k

l=1

�
, then all par-

ticle weights would have been equal. Unfortunately, such direct
sampling is not possible in most cases, and thus we resort to sam-
pling from a so-called importance function that “resembles” the
desired posterior, and from which samples can be drawn with rel-
ative ease. The mismatch between the sought density and the im-
portance function is compensated in the calculation of weights,
chosen proportional to their ratio evaluated at each particle [1, 5].
The choice of importance function is a very important step in the
design of a particle filtering algorithm. Two common choices are
discussed next.

3.2. Prior importance function

Perhaps the most intuitive choice of importance function is the
prior importance function p(xk | xn,k−1); i.e., the n-th particle
is updated by propagating it through the state-evolution part of the
system: xn,k = f(xn,k−1,un). This is an often-made choice, for
simplicity considerations. The drawback is that particles evolve
without regard to the latest measurement, which only comes into
play in the ensuing weight update. When using the prior impor-
tance function, the said weight update at time instant k is given
by wn,k = wn,k−1p(yk | xn,k), followed by normalization to en-
force

�N
n=1 wn,k = 1.

Regardless of the particular importance function employed, a
common problem in particle filtering is degeneracy: the weights
of all but a few particles tend to become negligible after a few
iterations [1, 5]. Degeneracy can be detected via degeneracy mea-
sures, and mitigated via resampling techniques [1, 5]. Resampling
the discrete measure replicates particles with large weights and re-
moves those with negligible weights. All particle weights become
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equal after resampling. There exist several computationally effi-
cient (O(N)) resampling schemes that can be used to avoid the
quadratic cost of brute-force resampling [1, 5].

3.3. Optimal importance function

From the viewpoint of minimizing the variance of the weights, the
optimal importance function is given by [1, 5]

p(xk|xn,k−1, yk) =
p(yk|xk)p(xk|xn,k−1)�
x

p(yk|x)p(x|xn,k−1)dx
.

Notice that, in contrast to the prior importance function, the above
takes into account the newly available measurement in the parti-
cle update itself. While both the prior importance function and the
optimal one yield consistent algorithms1, the optimal one usually
works well with much smaller N , and is therefore preferable from
a performance point of view. There are, however, two difficulties
associated with the use of the optimal importance function. First,
it requires multidimensional integration to compute the normal-
ization factor, which is often intractable. Second, sampling from
the optimal importance function is more complicated than sam-
pling from the prior. The smaller number of particles needed to
attain satisfactory performance with the optimal importance func-
tion usually more than offsets the cost of drawing samples from it;
the integration problem remains the bottleneck in most cases [1].
Thankfully, for our particular model, it turns out that it is possible
to carry out this integration analytically. This is explained next.

Denote xk := [ωk, Ak]T , where ωk ∈ [−π, π), and Ak ∈ C;
likewise xn,k−1 := [ωn,k−1, An,k−1]

T , and a dummy variable
x := [ω, A]T . Let D(yk,xn,k−1) :=

�
x

p(yk|x)p(x|xn,k−1)dx.
Then

D(yk,xn,k−1) =

�
ω∈[−π,π)

�
A∈C

1

2πσ2
n

e
− |yk−Aejωk|2

2σ2
n ×

�
(1 − h)δ(ω − ωn,k−1)δ(A − An,k−1) +

h

2π

1

2πσ2
A

e
− |A|2

2σ2
A

�
dAdω

This integral can be computed by completing the squares, yield-
ing

D(yk,xn,k−1) =
1

2π

h

σ2
n + σ2

A

e
− |yk|2

2(σ2
n+σ2

A
) +

1

2π

1 − h

σ2
n

e
− |yk−An,k−1e

jωn,k−1k|2
2σ2

n .

For the above optimal choice of the importance function, the
weight update is given by

wn,k ∝ wn,k−1p(yk|xn,k−1) = wn,k−1D(yk,xn,k−1),

followed by normalization to 1. What is missing is a way to sample
from the optimal importance function. As a first step towards this

1In the sense that the pertinent discrete measure approximations con-
verge to the sought continuous distributions as N → ∞, see [1] and refer-
ences therein.

end, note that p(xk|xn,k−1, yk) can be written as a mixture of two
pdfs

p(xk|xn,k−1, yk) = (1−h̃)p0(xk|xn,k−1, yk)+h̃p1(xk|xn,k−1, yk),

where

p0(xk|xn,k−1, yk) := δ(ωk − ωn,k−1)δ(Ak − An,k−1),

p1(xk|xn,k−1, yk) :=

1
2π

1
2πσ2

n

1
2πσ2

A
e
− |yk−Akejωkk|2

2σ2
n e

− |Ak|2
2σ2

A

1
2π

1
σ2

n+σ2
A

e
− |yk|2

2(σ2
n+σ2

A
)

,

and

h̃ := h

1
2π

1
σ2

n+σ2
A

e
− |yk|2

2(σ2
n+σ2

A
)

D(yk,xn,k−1)
.

It follows that with probability 1− h̃ we simply copy the previous
particle, else we draw a particle from p1(xk|xn,k−1, yk). We will
use rejection sampling techniques for this latter step, as explained
next.

3.4. Sampling from the optimal importance function: Rejec-
tion

The basic idea of rejection-based sampling can be summarized as
follows [4, pp. 40-42]. Suppose we wish to draw samples from
a density φ(x), for which there exists a dominating density g(x)
and a known constant c such that φ(x) ≤ cg(x), ∀x. In practice,
we choose g(x) to be easy to sample from, and such that c is as
small as possible. The rejection method then works as follows.
We i) draw a sample x from g(·) and an independent sample U ∼
U([0, 1]); ii) set τ := c g(x)

φ(x)
; iii) test whether Uτ ≤ 1; if so, we

accept the sample x; else we reject it and repeat the process.
It can be shown that the above rejection method generates sam-

ples from the desired density φ(.), and the mean number of itera-
tions until a sample is accepted is c (thus the desire to keep c ≥ 1
as small as possible). Furthermore, the distribution of the number
of trials is geometic with parameter 1 − 1

c
, which means that the

probabilities of longer trials decay exponentially [4, p. 42].
In our present context, we wish to sample from the density

p1(xk|xn,k−1, yk). Define

µ :=
|yk|σ2

A

σ2
n + σ2

A

, σ2 :=
σ2

nσ2
A

σ2
n + σ2

A

.

Using the triangle inequality, it can be shown that the following is
a suitable dominating density:

g(xk|xn,k−1, yk) =
e
− (|Ak|−µ)2

2σ2

(2π)5/2Q0σ
,

for which it holds that p1(xk|xn,k−1, yk) ≤ cg(xk|xn,k−1, yk),
with

c :=
√

2πQ0/σ ≥ 1,

Q0 :=

� ∞

r=0

1

σ
√

2π
e
− (r−µ)2

2σ2 dr =
1

2
erfc(− |yk|σA

σn

�
2(σ2

n + σ2
A)

).
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Through experimentation, we have found that even better results
can be attained using an outer rejection loop, which declines candi-
dates xn,k generated through rejection when the following metric
exceeds a certain small value (set to 3×10−3 in our experiments):

h̃(yk,xn,k) := h

1
2π

1
σ2

n+σ2
A

e
− |yk|2

2(σ2
n+σ2

A
)

D(yk,xn,k)
,

where D(·, ·, ·) was defined in Sec. 3.3. This outer rejection loop
selects particles that are consistent with the new measurement (cf.
the functional form of the denominator) and, at the same time, have
large weight after the associated update. We do not have a full
explanation at this point, yet this version of the algorithm appears
to yield the best results - in particular, better than the one based
on the optimal importance function. Note that the latter is optimal
with respect to minimizing the variance of the weights after the
update (and typically works better than the one based on the prior
importance function), but it is not necessarily optimal in terms of
the performance - complexity trade-off.

4. SIMULATIONS

We now present simulation results for the three algorithms: the
basic one using the prior importance function (denoted P), the one
using the optimal importance function (O), and the one using the
outer rejection loop as above (V). Fig. 1 shows a plot of a typi-
cal simulation run, using the posterior mean to form instantaneous
frequency estimates and multinomial resampling for all three algo-
rithms. Monte-Carlo (MC) simulation results are presented in Fig.
2. The Root Mean Square Error (RMSE) frequency estimation
performance of the three algorithms is assessed using the follow-
ing parameters: h = 0.01, T = 100, σ2

A = 1, σ2
n = 0.2, and the

number of MC trials is 300. The execution time for P is O(NT ),
whereas for O and V the execution time is also an increasing func-
tion of h. As a result, O and/or V can be faster than P, even for the
same number of particles. For our simulation setup above, P, O,
and V, each with 1K particles, have about the same average execu-
tion time, yet V does much better in terms of RMSE as shown in
Fig. 2. It takes 3K particles for O and 5K particles for P to reach
the performance of V with 1K particles.

5. CONCLUSIONS

We have developed three new particle filtering algorithms for track-
ing a frequency-hopped complex sinusoid, based on a novel stochas-
tic state-space formulation. The algorithms range from a plain-
vanilla version that uses the prior importance function (P), to a
more advanced version that employs the optimal importance func-
tion (O), and, finally, an improvement of the latter using a problem-
specific outer rejection loop (V). The two latter algorithms afford
considerably better performance - complexity trade-offs.

6. REFERENCES

[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, “A tu-
torial on particle filters for nonlinear/non-Gaussian Bayesian
tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp.
174–188, Feb. 2002.

[2] L. Aydin and A. Polydoros, “Hop-timing estimation for FH
signals using a coarsely channelized receiver,” IEEE Trans.
Communcations, vol. 44, no. 4, pp. 516–526, Apr. 1996.

[3] S. Barbarossa and A. Scaglione, “Parameter estimation
of spread spectrum frequency-hopping signals using time-
frequency distributions,” in Proc. Signal Proc. Advances in
Wireless Communications, pp. 213–216, Apr. 1997.

[4] L. Devroye, Non-uniform random variate generation,
Springer-Verlag, New York, 1986. Available on-line at
http://cgm.cs.mcgill.ca/∼luc/rnbookindex.html

[5] P. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.
Bugallo, J. Miguez, “Particle Filtering,”, IEEE Signal Pro-
cessing Magazine, pp. 19–38, Sep. 2003.

[6] X. Liu, N. D. Sidiropoulos, and A. Swami, “Blind high reso-
lution localization and tracking of multiple frequency hopped
signals,” IEEE Trans. Signal Processing, vol. 50, no. 4, pp.
889–901, Apr. 2002.

[7] X. Liu, N. D. Sidiropoulos, and A. Swami, “Joint Hop Tim-
ing and Frequency Estimation for Collision Resolution in Fre-
quency Hopped Networks,” IEEE Trans. Wireless Communi-
cations, to appear, Nov. 2005.

[8] M. K. Simon, U. Cheng, L. Aydin, A. Polydoros, and B. K.
Levitt, “Hop timing estimation for noncoherent frequency-
hopped M-FSK intercept receivers,” IEEE Trans. Commu-
nications, vol. 43, no. 2/3/4, pp. 1144–1154, Feb./Mar./Apr.
1995.

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Particle Filter estimates vs. true frequencies

True frequency
P, 5K particles
O, 3K particles
V, 1K particles

Fig. 1. Typical sample run of the three algorithms using different
number of particles for each.

1000 2000 3000 4000 5000 6000 7000 8000 9000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

No of Particles

R
M

S
E

RMSError for all algorithms for various number of Particles

P
O
V

Fig. 2. MC simulation results for the three algorithms.

III ­ 28


