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ABSTRACT

Rao-Blackwellised Particle Filters (RBPFs) are a class of Par-

ticle Filters (PFs) that exploit conditional dependencies be-

tween parts of the state to estimate. By doing so, RBPFs can

improve the estimation quality while also reducing the over-

all computational load in comparison to original PFs. How-

ever, the computational complexity is still too high for many

real-time applications. In this paper, we propose a modified

RBPF that requires a single Kalman Filter (KF) iteration per

input sample. Comparative experiments show that while good

convergence can still be obtained, computational efficiency is

always drastically increased, making this algorithm an option

to consider for real-time implementations.

1. INTRODUCTION

Particle Filters (PF) constitute a family of solutions to the so-

called state estimation problem represented by the following

coupled equations:

xk = f(xk−1,wk) (1)

zk = h(xk,vk) (2)

where xk represents the state vector at instant k, zk is the

vector of observations, wk and vk are the process and the

measurement noises, f is a signal transition function and g
is a measurement function (both assumed to be known). The

goal is to estimate the state based on all available measure-

ments up to time k, which we denote Zk = z0:k. The PFs

introduce an approximate recursive solution to (1) and (2) for

very weak assumptions: f and h may be non-linear, v and w
may be non-Gaussian, at the cost of a more computationally

expensive implementation [1]. PFs exist in many versions

[2][3][4], and should be tailored to the particular dynamics

of the problem that they address. Rao-Blackwellised Particle

Filters (RBPF) are a branch of PFs applicable under certain

state dynamics, aiming at improving convergence and effi-

ciency [2][5].

The increase in popularity of PFs is still inhibited by their

computational load [1]. We present here a version of RBPF
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which can further improve efficiency, making this method

more attractive for real-time implementations. In the next

paragraphs, a brief presentation of the generic PF algorithm

will be shown. Then, a section on regular RBPFs will follow.

Next, the modification of the RBPF algorithm along with its

rationale will be introduced, followed by experimental results

obtained from the application of this algorithm to tracking and

signal processing examples. We will conclude on the pros and

cons of using the modified algorithm.

2. GENERIC PARTICLE FILTERS

We refer the reader to [1] for a complete derivation of the

PF algorithm summarized here. We use the subscripts k, i to

denote the ith particle at instant k. Note that the algorithm re-

quires a prior choice of an importance density q(xk|xk−1,i, zk),
and an initialization step (see [1]).

PF algorithm
for every k, do the following:

◦ For every i ∈ {1, 2, .., N}
• Draw xk,i ∼ q(xk|Xk−1,i,Zk)

and set Xk,i = {xk,i ;Xk−1,i}
• Compute the unnormalized weights

w̃k,i = wk−1,i
p(zk|Xk,i,Zk−1)p(xk,i|Xk−1,i,Zk−1)

q(xk,i|Xk−1,i,Zk)

◦ Compute the normalizing factor
∑

i w̃k,i and obtain nor-

malized weights wk,i.

◦ If needed, resample particles

The estimates of xk can be computed at time instant k
from p(xk|Zk) � ∑

i wk,iδ(xk − xk,i). Even though, in

theory, particle filtering offers the most flexibility, as men-

tioned before it is also a computationally expensive approach.

In many situations, in order to obtain reliable estimates for

the states, a large number of particles is required, especially

when the dimension of the state vector is large [1]. RBPFs

are an important modification of the generic PF, applicable to

a certain class of state-space models. Using RBPFs, fewer

particles are needed to achieve similar convergence [1][2][5].
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3. RAO-BLACKWELLISED PARTICLE FILTERS

The idea is to try to exploit the structure of the state vector. If

some conditional dependencies between elements of the state

vector can be analytically explicited, then there is no need to

draw samples from the entire state space. Specifically, sup-

pose that xk = {x1k ;x2k} represents the state vector, for

which p(x2k|X1k,Zk) can be evaluated. This way, it is pos-

sible to run a PF on X1k while updating the corresponding

particles of x2k using p(x2k|X1k,Zk). RBPFs are in prac-

tice mostly used when part of the state evolves in a linear-

Gaussian fashion, conditioned upon the other part of the state.

In this context, p(x2k|X1k,Zk) is Gaussian and one can use

a set of N KFs to update particles of x2k. Note here that N
KF iterations are required at each step for an implementation

using N particles.

The RBPF procedure has been shown to sharply reduce

the variance of the error estimates [2][5]. Moreover, since the

dimension of the part of the state on which the PF is running

is smaller, we can expect to outperform, in efficiency, the reg-

ular PF: even though more operations are performed per parti-

cle, fewer particles are needed to achieve a given convergence

[5]. We now present formally the RBPF algorithm:

RBPF algorithm
For every k, do the following:

Simulation part (PF)
◦ Run a PF on the sub-state x1k

Exact part (KF)
◦ For every i, update p(x2k|X1k,i,Zk) using

p(x2k−1|X1k−1,i,Zk−1), x1k,i, x1k−1,i, and zk.

The RBPF algorithm is very similar to the regular PF, ex-

cept for the so-called exact part.

4. A MODIFICATION OF THE RBPF ALGORITHM

4.1. Presentation of the algorithm

The main difference from the RBPF approach lies in the way

that the particles {x2k,i}N
i=1 are propagated to the next itera-

tion of the algorithm. Let us first describe how the algorithm

operates, and how the two “subfilters” – Particle and Kalman

– interact. At step k, the PF will compute its own estimate,

x̂1k. This estimate is passed to a single KF to update the

mean x̂2k and error covariance matrix Kk of an estimate for

x2k. In turn, {x̂2k;Kk} are passed to the PF at the begin-

ning of the next step, which still carries the particles x1k,i.

A new procedure then takes place: a set of N new samples

x2k,i ∼ N (x2k|x̂2k,Kk) are generated and coupled to the

particles {x1k+1,i}N
i=1 that are drawn at the beginning of the

simulation part. With this completed set of particles, the PF

can now carry on, and the algorithm continues.

We now formally present the modified RBPF algorithm:

Modified RBPF algorithm
Initialization
◦ Obtain N initial particles of x10

◦ Choose initial mean x̂20 and error covariance matrix K0

for an estimate of x20.

For every k, do the following:

Simulation part (PF)
◦ For every i ∈ 1, 2, .., N

• Draw x2k−1,i ∼ N (x2k−1|x̂2k−1,Kk−1)

• Draw x1k,i ∼ q(x1k|X1k−1,i,Zk)

and set X1k,i = {x1k,i ;X1k−1,i}
• Compute the unnormalized weights

w̃k,i =
p(zk|X1k,i,Zk−1)p(x1k,i|X1k−1,i ,Zk−1)

q(x1k,i|X1k−1,i,Zk)

◦ Compute the normalizing factor
∑

i w̃k,i and obtain nor-

malized weights wk,i

◦ Resample only the particles x1k,i, with replacement.

Exact part (KF)
◦ Compute x̂1k = N−1

∑N
i=0 x1k,i

◦ Obtain N (x2k|x̂2k,Kk) = p(x2k|X1k = X̂1k,Zk) us-

ing a Kalman Filter and x̂1k, x̂2k−1, Kk−1 and zk.

Note that in the exact part, we are updating the distribu-

tion p(x2k|X1k = X̂1k,Zk), and we are taking its mean as

our estimate for x2k. In contrast, in the regular RBPF, we

must update p(x2k|X1k = X1k,i,Zk) for all i (all particles),

take each of their means to form {x2k,i}N
i=1, and only then

are we able to form an estimate for x2k, using the weights

computed by the PF. In the simulation part, the weight com-

putation is identical to that carried out during regular RBPF,

but in particular, we have ∀i,Kk,i = Kk (should these ma-

trices intervene in the computation of the weights). Finally,

we consider that resampling is done at each step, so that the

available particles of x1k,i are as relevant as possible (only

a few will have negligible weight). It would not serve any

purpose to resample the x2k,i particles, however the x1k,i are

still subject to degeneracy.

4.2. Advantages and drawbacks

As the main advantage, since only 1 KF is used instead of

N , the efficiency is drastically increased (as observed by the

execution time), especially if the number of particles used is

large. Another advantage is that there is less memory usage.

In the regular RBPF, the N means and covariance matrices

used in the KFs must be stored. If x2k ∈ R
n, then N(n+n2)

memory locations must be used, instead of n + n2 for the al-

gorithm presented here (since only Kk must be stored).
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On the other hand, we can expect that there will be a loss

in performance. Specifically, for the modified algorithm, we

are only passing a single estimate of x1k at step k to a single

KF, and not the entire approximated distribution to a bank of

KFs. If this estimate is an expectation, then the algorithm will

not perform as well if the current measure {x1k,i , wk,i}N
i=1

is not unimodal. Similarly, if we decide to only return the par-

ticle with maximum weight to the KF, then we are taking the

risk of selecting an outlier. Moreover, in the regular RBPF, the

analytical relationship that exists between every particle of x1

and x2 (and their history) is only approximated in the modi-

fied algorithm. Indeed, at the beginning of the simulation part,

each x2k−1,i is drawn from a Gaussian distribution instead of

being the “exact” match for x1k−1,i (i.e., the value that would

be returned by a KF iterated on x1k−1,i). For these reasons,

we also expect that the difference of performance between

the two algorithms will increase with larger measurement and

process noises. Intuitively, since the single estimate of x1k

is the only source of information that the KF can rely on, re-

peated inaccuracies could potentially gear the KF in wrong

directions, damaging in turn the quality of estimates of x2k.

5. APPLICATIONS AND PERFORMANCE

5.1. A first example: maneuvering target tracking

Consider the problem of tracking a maneuvering target, whose

position and velocity at instant k are given by a continuous

random vector x2k ∈ R
n−1, and where the maneuver/regime

of the target is represented by the discrete random variable

x1k ∈ R. The state to be estimated is xk = {x1k ; x2k}.

The model is as follows:

x2k = Fx2k−1 + Bx1k + wk (3)

zk = Cx2k + vk (4)

Additionally, p(x1k|x1k−1) is given, w and v are zero-

mean Gaussian noises, with covariance matrices Q and R.

This problem can be solved using RBPFs, since given X1k,

the dynamics of x2k are linear-Gaussian. In our model, we

use x2k = [xk yk ẋk ẏk]T where (x, y) is the position of the

target in a cartesian plane. We take:

F =

⎡
⎢⎢⎣

1 0 0.3 0
0 1 0 0.3
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

1.25
−1.25
0.25
−0.25

⎤
⎥⎥⎦

We only observe the noisy position (x, y) of the object.

For the sake of simplicity we suppose that x1k ∈ {−1, 0, 1}.

Let p(x1k|x1k−1) = 0.8 if x1k = x1k−1, and p(x1k|x1k−1) =
0.1 otherwise. We take q(x1k|X1k−1,i,Zk) = p(x1k|x1k−1).
The weight update equation is thus w̃k,i = p(zk|X1k,i,Zk−1).

Using the letter K for error covariance matrices, we can show

that:

p(zk|X1k,i,Zk−1) = N (zk|C(Bx1k,i + Fx2k−1,i),T)

where T = R + C[Q + FKk−1,iF
T ]CT

Both the regular and modified RBPF algorithms were im-

plemented in MATLAB. Examples of results are shown on

Figure 1. To compare the performance, a range of values

for the covariance of w and v was defined. For a given pair

{σw, σv}, where Q = σ2
wI and R = σ2

vI, we generated

a sequence of true states and measurements shared by both

algorithms. Initially the particles for the regular RBPF are

drawn from a specific normal distribution (which remains the

same throughout all tests), from which the modified RBPF

also draws its initial state estimates. To measure the perfor-

mance, we use the following metric:

• For the sub-state x1k, we add the absolute value of the

differences between the true and estimated values, and

divide the result by the number of observations.

• For the sub-state x2k, we compute
∑

k |x2k (true)−x̂2k|,
which we then divide elementwise by the empirical stan-

dard deviation of the true vector x2k. Finally, we add

the 4 values obtained.

The average performance computed over 200 experiments

for each pair {σw, σv}, using 120 particles is shown in Fig-

ure 2. Execution time was found to be of the order of 50%

higher for the regular RBPF. The modified algorithm offers a

performance that is close to the regular algorithm, but with in-

creasing degradation when both noises become large, as con-

jectured in Section 4.2.
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Fig. 1. Tracking example results, with σ2
v = 10 and σ2

w =
0.1. The estimates are in dotted lines.
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Fig. 2. Tracking example, performance comparison. The per-

formance for the modified algorithm is the upper surface.

5.2. Second example

We now take an example that can be applied in signal pro-

cessing. Supposing (without loss of generality) that x1k and

x2k have the same dimension:

x1k = f(x1k−1) + w1k (5)

x2k = Fkx2k−1 + w2k (6)

zk = x1k
T x2k + vk (7)

The sub-state x2k can be seen as the coefficients of a time-

varying filter. Let w1k ∼ N (0,Q1), w2k ∼ N (0,Q2), and

vk ∼ N (0,R). We can solve this problem using RBPFs.

With q(x1k|X1k,i,Zk−1) = p(x1k|x1k−1), we have again

w̃k,i = p(zk|X1k,i,Zk−1), and we can show that:

p(zk|X1k,i,Zk−1) = N (zk|x1k,i
T Fkx2k−1,i,T)

where T = R + x1k,i
T (Q2 + FkKk−1,iF

T
k )x1k,i

We present the simple case where {x1k,x2k} ∈ R
2, f() =

arctan(), and Fk = I. We thus have an unknown time vary-

ing gain applied to an unknown signal, evolving in a known

non-linear fashion. An example of results from the imple-

mentation of both algorithms is shown in Figure 3. We note

again a significant decrease in execution time (of the order of

30%), at the cost of a potential loss in performance, especially

in the presence of noises with large amplitude. We also note

that some cases have been found to perform seemingly better

for both examples, although it is commonly not the case. For

instance, observe the specific results of Figure 3: the gain is

tracked faster when the modified RBPF algorithm is used.

6. DISCUSSION AND CONCLUSION

We presented in this paper a modification to Rao Blackwel-

lised Particle Filters. From the observation of the algorithm

and through two examples, we have found that this alteration

constitutes a tradeoff between performance and efficiency. The

modified algorithm always executes much faster, but is in
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Fig. 3. Signal processing example. The estimates are the

dotted lines.

counterpart more sensitive to noise. The presented algorithm

is a radical simplification, but we are presently considering a

more advanced approach, in which a given number of KFs

is specified before the algorithm execution. At the end of

the simulation part, the estimate for the distribution of x1k

is regularized and approximated by a mixture of Gaussians.

The number of KFs is thus equal to the order of the Gaussian

mixture. The computational load is still reduced, and we can

expect a better performance than that obtained in the modified

algorithm of this paper.
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