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ABSTRACT

We introduce in this paper an improved particle filter for mobile
robot localization using a parametric model of the environment.
The proposed filter combines a clutter suppression routine for fea-
ture extraction with an optimized importance function and measur-
ement-driven MCMC move steps. The filter is tested with both real
and synthetic data and its performance is compared to competing
algorithms found in the literature.

1. INTRODUCTION

A key requirement [1] in the design of any autonomous
robotic system is the ability to accurately estimate a mobile
robot’s position and orientation with respect to a map of its
environment. Jensfelt et al [2] considered this problem rep-
resenting each wall in a room by a parameterized line and
utilizing some form of pre-processing of raw laser-scanner
measurements to extract features that were subsequently as-
similated using a simplified extended Kalman filter (EKF).
In this paper, we follow Jensfelt’s appproach assuming the
same odometric model as in [2] and a similar feature-based
observation model with a few changes for technical pre-
cision. Contrary to [2] however, we replace the extended
Kalman filter with an improved sampling/importance re-
sampling (ISIR) particle filter [3] that incorporates an op-
timized importance function to reduce particle degeneracy
and also uses a measurement-driven Metropolis-Hastings
move step [4] to reduce particle impoverishment.

Due to the existence of clutter in the room, a prelimi-
nary validation algorithm is required to separate measure-
ments of interest that come from the room’s walls from
those originating from other objects such as chairs, tables or
cupboards. Using the geometry of the room, we derive an
algorithm for the establishment of measurement validation
gates around the walls and incorporate the measurement val-
idation process into the dynamic pose estimation problem.
Once the clutter is suppressed, the least-squares approach in
[2] is used to extract the features of interest.

The work of the first author was supported by CAPES, Brazil.

The paper is divided into 5 sections. Section 1 is this In-
troduction. In Section 2, we describe briefly the odometric
and observation models and discuss the measurement vali-
dation algorithm. In Section 3, we introduce the ISIR filter.
In Section 4, we evaluate the performance of the filter us-
ing both simulated and real data, and compare the proposed
algorithm to other benchmarks in the literature. Finally, we
summarize in Section 5 the conclusions of our work.

2. THE MODEL

Let xk = [xk yk γk]T be an unknown random vector that
collects, at instant k, the robot’s pose (xk, yk) and orien-
tation angle, γk, with respect to a fixed (non-inertial) co-
ordinate system, henceforth referred to as the environment
system. Let also Dk and ∆γk represent respectively the
displacement between two consecutive poses of the robot
and the change in the orientation angle between instants k
and k + 1 obtained from the robot’s odometer. Due to ran-
dom drift affecting the robot, its true state xk+1 at instant
k + 1 is better described by the nonlinear, stochastic dy-
namic model, see [2],⎡⎣xk+1

yk+1

γk+1

⎤⎦
︸ ︷︷ ︸

xk+1

=
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(1)

where, for the purposes of this paper, uk = (Dk,∆γk) is
deterministic and known, and {εk}, k ≥ 0, is a sequence
of independent, identically distributed (i.i.d.) Gaussian ran-
dom vectors with zero mean and covariance matrix Q.

2.1. Observation Model

Assume that, for a rectangular room, there are N walls in
the field of view of the robot’s sensor at instant k, where
N = 1, . . . , 4. For i = 1, . . . , N , the extracted features
used for data assimilation at instant k are [2] the perpen-
dicular distances, ρk,i, from the robot’s centroid to each
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detected wall, and the respective orientation angles, αk,i,
−π ≤ αk,i ≤ π, of each detected wall line, measured with
respect to the moving (inertial) coordinate system of the
robot, henceforth referred to as the robot system. Next, let
ρm

i , i = 1, . . . , N , denote the perpendicular distances from
the origin of the environment coordinate system to each de-
tected wall, and let αm

i , i = 1, . . . , N , denote the corre-
sponding orientation angles of each wall line with respect to
the same fixed coordinate system. Assuming that the pairs
(ρm

i , αm
i ) are known from the map M of the environment,

the feature vector yk,i = [ρk,i αk,i]
T for the ith detected

wall at instant k is given then by the nonlinear model (mod-
ified from [2] to account for all possible relative positions
between the robot and the walls)

yk,i =
[
ζk,i(ρm

i − √
x2

k + y2
kcos(αm

i − βk))
αm

i − γk + ξk,i

]
︸ ︷︷ ︸

hk,i(xk,Mi)

+vk,i (2)

where βk = tan−1(yk/xk), {vk,i}, k ≥ 1, is a sequence
of Gaussian random vectors with zero mean and (generally)
time-varying covariance matrices Rk,i, and the parameters
ζk,i and ξk,i are given by

ζk,i =

{
1, || Projρm

i
(xk, yk) ||≤ ρm

i

−1, || Projρm
i

(xk, yk) ||> ρm
i ,

(3)

ξk,i =

⎧⎪⎪⎨⎪⎪⎩
0, ζk,i = 1 and αm

i − γk ≤ π
+π, ζk,i = −1 and αm

i − γk < 0
−π, ζk,i = −1 and αm

i − γk ≥ 0
−2π, ζk,i = 1 and αm

i − γk > π.
(4)

In (3), || Projρm
i

(xk, yk) || denotes the norm of the orthog-
onal projection of the point (xk, yk) onto the perpendicular
line connecting the origin of the environment system to the
ith wall. Finally, the complete feature vector at instant k is

yk =
[
hT

k,1(xk,M1) . . .hT
k,N (xk,MN )

]T︸ ︷︷ ︸
hk(xk,M)

+vk (5)

where vk =
[
vT

k,1 . . .vT
k,N

]T

. For simplicity, we assume

in this paper that the feature error sequences {vk,i} and
{vk,j}, k ≥ 1, are mutually independent and identically
distributed for i �= j, and also independent of {εk} and of
x0, see equation (1).

2.2. Validation Gates and Feature Extraction

Let x̂k|k−1 be an estimate of robot’s state at instant k based
on the features observed from instant one up to instant k−1,
and let (xs,i, ys,i) and (xe,i, ye,i) denote respectively the
start and end points, in the environment system, that specify

the ith wall in the known parametric model M of the room.
The measurement validation gate for the ith detected wall is
defined by the vector, see [2], G = [ρ̂k,i α̂k,i δ ϕi

s,k ϕi
e,k]T

where (ρ̂k,i, α̂k,i) = hk,i(x̂k|k−1, Mi) are respectively the
predicted perpendicular distance and orientation angle cor-
responding to the ith line, δ is the width of the validation
gate, and (ϕi

s,k, ϕi
e,k) are the (counterclockwise positive-

oriented) angles between the xR-axis in the moving robot
system and the lines that connect the origin of that coordi-
nate system respectively to the start and end points of the
ith line. From the geometry of the problem, it can be shown
that [

ϕi
s,k

ϕi
e,k

]
=

[
θi

s,k + α̂k,i − π
2

−θi
e,k + α̂k,i + π

2

]
(6)

where θi
s,k = sin−1(ρ̂k,i/di

s,k), θi
e,k = sin−1(ρ̂k,i/di

e,k),
and di

n,k =
√

(xn,i − x̂k|k−1)2 + (yn,i − ŷk|k−1)2, n =
{e, s}. Assume now that, at instant k, the laser range finder
generates 180 data points, Pk,l, l = 1, . . . , 180, distributed
from the −yR axis to the +yR axis, with equal spacing of
one degree between them. The ith line is declared visible
if ϕi

s,k ∈ [−π/2, π/2] or ϕi
e,k ∈ [−π/2, π/2]. For each

detected line i, following a conversion of the data set from
robot to environment coordinates using the predicted pose
x̂k|k−1, we project all data points Pk,l for which max(0, ϕi

s,k

+π/2) < (lπ)/180 < min(π, ϕi
e,k +π/2) onto the perpen-

dicular line connecting the origin of the environment system
to the ith line and declare Pk,l a valid measurement within
the corresponding validation gate of that line if and only if

abs(ρm
i − || Projρm

i
(Pk,l) ||) ≤ δ

where abs(.) denotes the absolute value of a real number.
Finally, once a set of validated measurements is obtained
for each detected line i, we use the least-squares algorithm
in [2] to estimate the corresponding line features ρk,i and
αk,i and the respective error covariance matrix Rk,i. We
omit the details in this paper due to lack of space.

3. IMPROVED SIR FILTER

The highly nonlinear nature of the odometric and observa-
tion models in (1) and (2) suggests the use of particle filter-
ing [3], also known in robotics as Monte Carlo localization
[5], to approximate the optimal minimum mean square er-
ror (MMSE) estimate of the unknown state xk given the
observed features y1:k. Briefly, a particle filter recursively

draws M samples
{
x(j)

k

}
according to a known probability

density function q(xk | x(j)
0:k−1,y1:k) referred to as the im-

portance function, and weighs those samples appropriately
such that their weighted average converges (in some statis-
tical sense) to the desired MMSE estimate of the state as the
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number of samples (or particles) goes to infinity.

Importance Function Approximation In order to mini-
mize the variance of the particle weights conditioned on the
observations and the simulated sample trajectories, it is de-
sirable to sample from the optimal importance function, see
[3], q(xk | x(j)

0:k−1,y1:k) = p(xk | x(j)
k−1,yk). Since there is

however no closed-form analytical expression for the ideal
importance function, we proceed then as suggested in [3]
and linearize the observation equation (5) around f(x(j)

k−1,
uk−1) to approximate the desired importance function by a
multivariate normal distribution N (xk − m(j)

k ,Σ(j)
k ) such

that

Σ(j)
k =

[
Q−1 + (H(j)

k )T R−1
k (H(j)

k )
]−1

(7)

m(j)
k = (Σ(j)

k )
{
Q−1f(x(j)

k−1,uk−1)

+ (H(j)
k )T R−1

k

[
yk − hk(f(x(j)

k−1,uk−1),M)

+ H(j)
k f(x(j)

k−1,uk−1)
]}

. (8)

In (8), Rk = diag(Rk,1, . . . ,Rk,N ) and H(j)
k =

[
(H(j)

k,1)
T . . .

(H(j)
k,N )T

]T

where H(j)
k,i = ∂hk,i(xk,Mi)

∂xk
evaluated at xk =

f(x(j)
k−1,uk−1). After sampling the jth particle x̃(j)

k ∼ N (xk−
m(j)

k ,Σ(j)
k ) at the kth time step, we update the correspond-

ing importance weight w̃
(j)
k using the recursion [3]

w̃
(j)
k = Ckw

(j)
k−1

p(yk | x̃(j)
k ,M) p(x̃(j)

k | x(j)
k−1)

N (x̃(j)
k − m(j)

k , Σ(j)
k )

(9)

where Ck is computed such that
∑

j w̃
(j)
k = 1.

Resampling and Move Steps In order to achieve a further
reduction in particle degeneracy, we resample a new particle

set
{
x(j)

k

}
from the original set

{
x̃(j)

k

}
with replacement

according to the weights w̃
(j)
k , see [3]. All particle weights

are then reset to w
(j)
k = 1/M , j = 1, . . . ,M . Finally, in

order to restore diversity in the particle population after the
resampling step, we follow [4] and propose an alternative
measurement-driven Metropolis-Hastings (MH) move step

that moves the weighted particle set
{
x(j)

k , 1/M
}

to a new

weighted sample set
{
x(j)

k , 1/M
}

using the locally opti-

mized importance function N (xk−m(j)
k ,Σ(j)

k ) as proposal
density. Specifically, let

w′(x) =
p(yk | x,M) p(x | x(j)

k−1)

N (x − m(j)
k , Σ

(j)

k )

where Σ
(j)

k and m(j)
k are obtained from equations (7) and

(8) respectively, evaluated at the resampled particle x(j)
k−1.

The proposed move step for j = 1, . . . ,M is as follows:

• Sample x̂(j)
k ∼ N (xk − m(j)

k ,Σ
(j)

k ).
• Sample u ∼ U([0, 1]) and make the decision

If u ≤ min
{

1,
w′(x̂(j)

k )

w′(x(j)
k )

}
x(j)

k = x̂(j)
k (accept move)

else x(j)
k = x(j)

k (reject move).

3.1. Dynamic Measurement Validation and Feature Ex-
traction

Given a properly weighted set of samples
{
x(j)

k−1, 1/M
}

that represents the posterior probability density function
p(xk−1 | y1:k−1) at instant k − 1, we first draw auxiliary
particles (x∗

k)(j) from p(xk | x(j)
k−1) and compute the pre-

dicted state estimate x̂k|k−1 = (1/M)
∑

j(x
∗
k)(j). Using

the estimate x̂k|k−1, we proceed then as in Section 2.2 to
compute the features yk. The auxiliary particles

{
(x∗

k)(j)
}

are then discarded and replaced with the new set
{
x̃(j)

k

}
sampled from the measurement-driven importance function
N (xk − m(j)

k ,Σ(j)
k ).

4. EXPERIMENTAL RESULTS

We simulated first the state and observation models in equa-
tions (1) and (2) using real odometric data {uk} recorded
by an ISR Magellan Pro robot. For simplicity, we assumed
time-invariant, empirically-estimated covariance matrices Q
and Rk,i = R,∀i, given by R = diag(502, (π/5)2), Q(1, 1)
= 16.49, Q(2, 2) = 5.24, Q(3, 3) = 0.0000989, Q(1, 2) =
Q(2, 1) = −4.18, Q(1, 3) = Q(3, 1) = 0.0229, and Q(2, 3)
= Q(3, 2) = −0.0014. The initial pose (x0, y0) is as-
sumed Gaussian with standard deviation equal to 20 cm
in both dimensions. Figures 1(a) and (b) show the root
mean-square (RMS) errors for the position estimates, re-
spectively in the x and y coordinates, for (i) a conventional
1000-particle bootstrap filter [3] , (ii) the proposed ISIR fil-
ter with M = 200 particles, and (iii) the extended Kalman
filter (EKF). The RMS curves were estimated from 1000
Monte Carlo runs and are superimposed to the ideal poste-
rior Cramer-Rao lower bound (PCRLB) evaluated using the
algorithm in [6]. Figures 1(a) and (b) show that the 200-
particle ISIR filter approaches the PCRLB and has roughly
the same performance as a bootstrap filter operating with
five times as many particles. The EKF also approaches
the PCRLB most of the time, but its performance in the
the estimation of the y-coordinate deteriorates in certain re-
gions where, according to the recorded odometry, the robot
is making sharp turns.

Next, we tested the 200-particle ISIR filter and the EKF
using real measurements recorded in a cluttered room us-
ing a laser scanner mounted on the Magellan Pro robot. The
sampling period between two consecutive recorded laser
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Fig. 1. RMS error position estimates (zoomed view): (a)
x-coordinate, (b) y-coordinate.

scans is 1s; the average processing times per scan on a
AMD Athlon 1.67 GHz PC running MatLab 6.5 are respec-
tively 0.625s for the ISIR filter and 0.393s for the EKF.
Figures 2(a) and (b) show the estimated robot trajectory, re-
spectively for the ISIR and extended Kalman filters, over
150 consecutive time steps. The filtered trajectories are su-
perimposed to the trajectory estimated by the deterministic
odometric model alone (without any data assimilation) and
compared to our best estimate of the ground truth. We see
from Figure 2 that, as expected, the trajectory predicted by
the odometric model deviates from the true robot’s path as
time increases, highlighting the need for data assimilation.
Both the ISIR and extended Kalman filters were capable
however of tracking the robot’s position fairly accurately for
this particular set of data, even though the chosen trajectory
includes abrupt turns close to corners where the robot’s sen-
sor has a very narrow field of view. Figure 2 also suggests
that the ISIR filter outperforms the EKF slightly following
the robot’s first and second turns (respectively top right and
bottom left of the curve). More extensive experiments are
needed however to determine whether that improvement is
statistically significant.

5. CONCLUSIONS

We introduced in this paper an improved sampling/impor-
tance resampling (ISIR) particle filter for mobile robot lo-
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Fig. 2. Estimated robot trajectory using real data: (a) EKF,
(b) ISIR filter.

calization using a parametric model of the environment. Syn-
thetic data experiments showed that a 200-particle ISIR fil-
ter approaches the ideal PCRLB, outperforming the extended
Kalman filter (EKF) and matching the performance of a
1000-particle bootstrap filter. Experiments with real data
showed on the other hand that both the 200-particle ISIR
filter and the EKF were capable of tracking the robot’s pose
fairly accurately despite heavy clutter in the room and a
suboptimal specification of the odometric and measurement
model parameters.

6. REFERENCES

[1] S. Thurn, W. Bugard, and D. Fox, “A probabilistic ap-
proach to concurrent mapping and localization for mo-
bile robots,” Mach. Learn., vol.31, pp. 29-53, 1998.

[2] P. Jensfelt and H. I. Christensen, “Pose tracking using
laser scanning and minimalistic environment models,”
IEEE Trans. Robot. and Autom., v.17, n.2, pp. 138-
147, April 2001.

[3] A. Doucet, S. J. Godsill, and C. Andrieu,“On sequen-
tial Monte Carlo sampling methods for Bayesian fil-
tering,” Stat. Comput., vol.10, pp. 197-208, 2000.

[4] W. R. Gilks and C. Berzuini,“Following a moving tar-
get Monte Carlo inference for dynamic Bayesian
models,” J. R. Statist. Soc. B, vol.63, pp. 127-146,
2001.

[5] S. Thrun, D. Fox, and W. Burgard, “Monte Carlo lo-
calization with mixture proposal distributions,” Proc.
of the AAAI Nat. Conf. on Artif. Intelligence, 2000.
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