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ABSTRACT

Consider a vector of independent normal random variables with un-
known means but known variances. Our problem is to reduce the
total variance of these random variables by exploiting the prior in-
formation that a significant proportion of them have “small” means.
We show that thresholding is an effective means of solving this prob-
lem, and propose two schemes for threshold selection: one based on
a uniformly most powerful unbiased test, the other on a Bayesian
information criterion selection rule. As an example application we
consider cepstral analysis and we show via numerical simulation that
the simple thresholding scheme proposed herein can achieve signif-
icant reductions of total variance.

1. INTRODUCTION

Let {ĉk}
M
k=0 be independent random variables having normal distri-

butions with unknown means {ck} and known variances {s2
k},

ĉk ∼ N (ck, s2
k) k = 0, . . . , M. (1)

The total variance of {ĉk},

TV(ĉ) �

M∑
k=0

E(ĉk − ck)2 =
M∑

k=0

s2
k (2)

ĉ = [ĉ0 · · · ĉM ]T

is often an important performance measure in applications. Conse-
quently, the problem of reducing the TV of {ĉk} by exploiting any
available information on {ck} is of significant interest. Quite fre-
quently, the only information we have about {ck} is that many of
them take on “small” values. For example, this is the case in cep-
stral analysis (see, e.g., [1]). Our problem, therefore, is to use the a
priori information that a large proportion of {ck} are nearly zero,
to replace {ĉk} by new estimates {c̃k} with reduced TV: TV(c̃)
< TV(ĉ) (preferably, TV(c̃) � TV(ĉ)). Note also that typically
M � 1, which is another fact we have to keep in mind when tack-
ling the stated problem.

Several papers in the statistical literature have proposed new es-
timates c̃k of ck, which have a somewhat smaller variance than the
variance s2

k of ĉk when ck is “small”; see, e.g., [2] and the refer-
ences therein. However, these estimates have a larger variance than
s2

k whenever ck is not “small”, which may well nullify the relatively
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small reduction in variance for “small” means. As a consequence,
the use of these estimates does not necessarily lead to a satisfactory
reduction in the TV.

In this paper we propose a thresholding-based approach for TV
reduction. In contrast with the estimation-based approach in [2] and
its references, our approach is based on detection. To introduce the
main idea behind our approach, we note that the trivial estimate
c̃k = 0 has a variance equal to c2

k, and therefore it is preferable
to ĉk whenever

c2
k ≤ s2

k. (3)

This observation suggests the following detection-based solution to
the TV reduction problem. Let

S =
{
k ∈ [0, M ] | c2

k ≤ s2
k

}
(4)

and let S̃ denote an estimate of the set S. We use S̃ to obtain new
estimates c̃k of ck via the thresholding of {ĉk}k∈S̃ :

c̃k =

{
0 if k ∈ S̃
ĉk else

(k = 0, . . . , M). (5)

To obtain S̃ we use both a uniformly most powerful unbiased test
(UMPUT) and a Bayesian information criterion (BIC) selection rule
- see Sections 2 and 3. The so-obtained sets S̃ turn out to be accu-
rate estimates of S in many cases, which leads to a guaranteed TV
reduction: TV(c̃) < TV(ĉ); the larger is S, the more significant is
the TV reduction achieved by our approach. In Section 4 we present
two numerical examples based on cepstral analysis (see, e.g., [1]
and the references therein) to illustrate the TV reductions that can be
achieved via the proposed methodology, along with some conclud-
ing remarks.

2. UMPUT-BASED ESTIMATION OF S

Because the random variables {ĉk} are independent, the test in the
definition of S, see (3), can be performed separately for each k =
0, . . . , M . Let the null hypothesis be that (3) holds true,

H0 : |ck| ≤ sk (6)

and let the alternative hypothesis be that (3) is false,

H1 : |ck| > sk. (7)

Also, let the false alarm probability PFA be given (PFA is the prob-
ability of inferring that H1 is true when in fact H0 is true). Then an
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UMPUT of (6) against (7) is given by ([3]):

|ĉk| ≤ µsk (8)

where µ is implicitly defined via the equality

prob(|ĉk| > µsk under |ck| = sk) = PFA. (9)

Below we present some explicit values of µ each corresponding to a
given PFA (which will be used later on in the paper):

µ = 2 ↔ PFA ≈ 0.160
µ = 3 ↔ PFA ≈ 0.023
µ = 4 ↔ PFA ≈ 0.001
µ = 5 ↔ PFA ≈ 0.000.

(10)

As already stated, for a given PFA, the test (8) with µ obtained
from PFA via (9) is UMPU. This is clearly an appealing property.
However, the performance of the test depends on PFA and therefore
the choice of PFA should be considered with some care. Indeed,
while simple data-independent choices of PFA - such as PFA ∈
[0.001 , 0.005] - may often work reasonably well, larger TV reduc-
tions can be achieved in a given problem by using empirical experi-
ence and a modest amount of a priori information on {ck} to choose
PFA.

For the cepstral analysis problem considered in Section 4 we
introduce some practical thresholding values of µ - see Table 1.
Corresponding values of PFA, for some of the values of µ in Ta-
ble 1, follow from (10). Note that in Table 1 we assumed that
N ∈ [128 , 2048]: for values of N < 128, the distribution of
the estimates {ĉk} may differ significantly from the asymptotic dis-
tribution in (1), assumed throughout this paper, whereas values of
N > 2048 are not common in practical applications.

Once µ was selected, the UMPUT-based estimate of S is given
by:

S̃ = {k ∈ [0, M ] | |ĉk| ≤ µsk} (11)

and the corresponding enhanced estimates {c̃k} of {ck} are obtained
from (5).

The a priori information required to select µ as in Table 1 is quite
modest. The corresponding thresholding scheme for TV reduction
can be considered to be essentially automatic. On the other hand,
one might think that a fully automatic scheme could be obtained in
the following manner. Let S̃µ denote the estimate in (11) of the set
S, corresponding to a specific µ. The TV(c̃µ) associated with S̃µ is
given by:

TV(c̃µ) =
∑

k∈S̃µ

c2
k +

∑
k/∈S̃µ

s2
k. (12)

Ideally, we would like to obtain the value of µ that minimizes the
above TV(c̃µ). However we cannot determine this minimizing value
of µ exactly because the first term in (12) is unknown. To estimate
this “optimal” value of µ, first we need to estimate the first term in
(12). However, the available estimates of the said term (see, e.g.,
[4] [5]) are not sufficiently accurate to produce a satisfactory esti-
mate of the µ that minimizes (12). Consequently, such a fully data-
dependent scheme for selecting µ will lead typically to larger TV(c̃)
values than for example the simple, weakly data-dependent scheme
in Table 1 (see [1] for more details on this aspect). A satisfactory
N -dependent scheme for threshold selection can, though, be derived
via a BIC approach - as explained in the section that follows.

3. BIC-BASED ESTIMATION OF S

Let S be defined as in (4), and let fS(ĉ ; c) denote the likelihood
function of {ĉk}

M
k=0 that corresponds to a generic set S (which may

possibly be empty). The BIC estimate of S is obtained as follows
(see, e.g., [6] [7] and references in the latter paper):

min
S

BIC(S) (13)

where

BIC(S) = min
c

[−2 ln fS(ĉ ; c)] + nS ln(M + 1). (14)

In (14), nS is the number of “free” parameters in the vector c (this
number will depend on S, see below). Note that BIC is an asymp-
totic selection rule that holds only if nS � M - this condition will
be verified later on, when an expression for nS will be available.

It follows from distributional properties of {ĉk} (see (1) and the
related discussion) that, to within an additive constant,

−2 ln fS(ĉ ; c) =
∑
k∈S

(ĉk − ck)2

s2
k

+
∑
k∈S̄

(ĉk − ck)2

s2
k

(15)

where S̄ is the difference set [0, M ] − S. Let Ŝ be defined similarly
to S, but for {ĉk} in lieu of {ck}:

Ŝ =
{
k ∈ [0, M ] | ĉ2

k ≤ s2
k

}
. (16)

To simplify the remaining derivation, we take a short cut based on
the observation that Ŝ can be expected to belong to the estimate S̃
of S (which is yet to be derived). Therefore, we can assume that S

contains Ŝ: Ŝ ⊂ S. Under this natural assumption we obtain from
(15):

min
c

[−2 ln fS(ĉ ; c)] =
∑

k∈(S−Ŝ)

(|ĉk| − sk)2

s2
k

(17)

where the minimum value is obtained at{
ck = ĉk k ∈ Ŝ and k ∈ S̄

ck = sk sign(ĉk) k ∈ (S − Ŝ).
(18)

Note that the number of “free” parameters in the previous minimiza-
tion problem is

nS = M + 1 − |S − Ŝ| (19)

where |S − Ŝ| denotes the number of elements of the difference set
(S − Ŝ) - indeed, in the minimization of the negative log-likelihood
function in (17), |S − Ŝ| parameters {ck} have been constrained to
be ±sk. Also note that in the application example considered in this
paper, viz. cepstral analysis, and presumably in other applications as
well, |S − Ŝ| is quite close to M ; therefore the condition nS � M
required for the validity of the BIC rule is satisfied.

It follows from (13), (14), (17), and (19) that the BIC estimate
S̃ of S is obtained via the minimization, with respect to S, of the
function:

∑
k∈(S−Ŝ)

(|ĉk| − sk)2

s2
k

− |S − Ŝ| ln(M + 1)

=
∑

k∈(S−Ŝ)

(|ĉk| − sk)2 − s2
k ln(M + 1)

s2
k

. (20)
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Table 1. Values of µ recommended for thresholding-based cepstral analysis.
�

�
�

�
�

�
�

�
�

�
N

Signal
type

Broadband
with small

dynamic range

Broadband
with medium

dynamic range

Narrowband
with large

dynamic range
N = 128 4 3 2

N ∈ (128, 2048) 4+N−128
1920

3+N−128
1920

2+N−128
1920

N = 2048 5 4 3

Interestingly, the minimizing set S̃ can be obtained explicitly:

S̃ =
{
k ∈ [0, M ] | (|ĉk| − sk)2 ≤ s2

k ln(M + 1)
}

. (21)

To see this, observe that for S = S̃ all terms in (20) are negative,
and that if S 	= S̃ then (20) increases (compared with its value at
S = S̃) either because it gets positive terms, or it loses negative
terms, or both.

To re-write the definition (21) of S̃BIC in a form similar to that
of S̃UMPUT in (11), we note the following facts:

(i) Clearly Ŝ ⊂ S̃ (for M ≥ 2);
(ii) For k /∈ Ŝ, the inequality in (21) can be re-written as

|ĉk| ≤ µNsk ; µN = 1 + [ln(M + 1)]1/2 (22)

(iii) The above inequality, (22), holds trivially for k ∈ Ŝ.

It follows from these observations that the BIC estimate of S in (21)
can be re-written in a form perfectly analogous to that of the UMPUT
estimate in (11):

S̃ = {k ∈ [0, M ] | |ĉk| ≤ µNsk} (23)

where µN is as defined in (22).
The difference between the two set estimates in (11) and, respec-

tively, (23) consists in the values selected for µ. By simple numerical
computations it can be readily seen that the BIC choice of µ agrees
reasonably well with the values of µ recommended in Table 1 for
the UMPUT in the case of signals whose spectra have a medium
dynamic range.

4. NUMERICAL EXAMPLES AND CONCLUDING
REMARKS

To illustrate the TV reductions that can be achieved by using the
proposed thresholding-based scheme, we consider the application of
this scheme to the cepstral analysis problem (see [1]). Let {y(t)}N−1

t=0

be an observed sample of a stationary, discrete-time, real-valued sig-
nal with spectrum Φ(ω). For notational convenience, we let {Φp}
denote the values taken by the spectrum at the Fourier frequency grid
points:

ωp =
2π

N
p ; p = 0, . . . , N − 1. (24)

The periodogram estimate of Φp is given by (see, e.g., [1]):

Φ̂p =
1

N

∣∣∣∣∣
N−1∑
t=0

y(t)e−iωpt

∣∣∣∣∣
2

; p = 0, . . . , N − 1. (25)

Assuming that Φp, Φ̂p > 0 (p = 0, . . . , N − 1) and that N is even
(for simplicity), let

ck =
1

N

N−1∑
p=0

ln(Φp)eiωkp ; k = 0, . . . , M (26)

ĉk =
1

N

N−1∑
p=0

ln(Φ̂p)e
iωkp + γδk,0 ; k = 0, . . . , M (27)

δk,0 =

{
1 if k = 0
0 else

where M = N/2 and where γ = 0.577216... is the so-called Eu-
ler’s constant. Consequently, in this section the random variables
{ĉk} are the estimates given by (27), and their means {ck} are given
by (26). Two cases of (log)spectra are considered: with small and,
respectively, medium range, see below for details. In each case we
will show the ratio TV(ĉ)/TV(c̃) for N = 128, 256, 512, 1024, and
2048. The enhanced estimates {c̃k} are obtained via (5) where S̃ is
given either by (11) and Table 1 [for UMPUT] or by (23) and (22)
[for BIC]. We remind the reader that in the case of cepstral analysis,
TV(ĉ)/TV(c̃) is a measure of the performance of the corresponding
estimated log-spectra (see [1]).

In the computation of TV(ĉ)/TV(c̃) the expectation operation
in the definition of TV (see, e.g, (2)) is approximated by an aver-
age over 1000 Monte-Carlo simulations. We also use Monte-Carlo
simulations to estimate TV(c̃) for S̃ given by (11) with µ ∈ [0, 10];
then we pick the value of µ that minimizes the so-estimated TV(c̃),
which we call µgenie because its determination requires knowledge
of the true sequence {ck}. In the figures that follow we also show
the ultimate ratio TV(ĉ)/TV(c̃) for µ = µgenie.

The signals used in our simulation study have been generated as
follows:
(i) Broadband MA with a small dynamic range of the log-spectrum

y(t) = e(t) + 0.55 e(t − 1) + 0.15 e(t − 2)

t = 0, . . . , N − 1

(ii) Broadband MA with a medium dynamic range of the log-spectrum

y(t) = e(t) + 0.4574 e(t − 1) + 0.2157 e(t − 2)

+ 0.3951 e(t − 3) + 0.1383 e(t − 4) t = 0, . . . , N − 1

where e(t) is a normal white noise with mean zero and unit variance.
The true log-spectra of these signals are shown in Fig. 1 to lend

support to the assertions made above about their dynamic spectral
range. The corresponding ratios TV(ĉ)/TV(c̃) for µ = µUMPUT ,
µBIC , and µgenie are displayed in Figs 2 - 3. The following remarks
on the simulation results shown in these figures are in order:

• The TV reduction obtained using µ = µUMPUT in case (i) is
nearly optimal (see Fig. 2, where the curve corresponding to
µUMPUT is very close to the curve corresponding to µgenie
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Fig. 1. The true log-spectra (in dB) of the two signals: (a) broadband
MA signal with small dynamic range, and (b) broadband MA signal
with medium dynamic range.

for all values of N ), and it ranges from 13 at N = 128 to 492
at N = 2048.

• From Fig. 2 we also note that the TV reduction obtained
by using µ = µBIC is less impressive (it varies from 17 at
N = 128 to 153 at N = 2048) than that obtained using
µ = µUMPUT .

• Finally, the TV reductions obtained in case (ii) using µ =
µUMPUT and µ = µBIC are very similar to one another and
quite close to the TV reduction obtained for µ = µgenie (see
Fig. 3). The obtained TV reduction varies from about 5 at
N = 128 to about 47 at N = 2048 for both µ = µUMPUT

and µ = µBIC as well as µ = µgenie.
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