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ABSTRACT 

An effective denoising method for ECG signals affected by real 
sources of noise is proposed in this paper. The method is based on 
a maximum a-posteriori (MAP) filtering in the diversity-enhanced 
wavelet domain, under realistic a-priori assumptions regarding the 
statistical properties of the wavelet coefficients of the ECG signal. 
In order to evaluate the performance of the method, we studied the 
signal-to-noise ratio (SNR) improvement factor and the degree of 
the denoising influence on the automatic signal segmentation 
procedures. The method was tested in both synthetic and real noise 
conditions and it showed very promising results. 

1. INTRODUCTION 

Automatic ECG signal interpretation aiming detection and even 
prevention of cardiac illness is gaining a large popularity in both 
medical and signal processing communities. Unfortunately, the 
ECG signal acquisition process is subjected to various disturbing 
perturbations. The most common are power-line interferences, 
electromyogram (EMG) noise caused by muscle activity, motion 
artifacts and baseline drift due to the respiration mechanism. All 
these unwanted phenomena make the automatic interpretation of 
the signal a difficult and sometimes even impossible task.  

Recently, new techniques based on wavelet transform became 
popular in relation with the signal denoising. The architecture of a 
wavelet-based denoising system relies on the wavelet transform 
ability to concentrate the useful signal energy into a small number 
of wavelet coefficients. The steps of such a denoising procedure 
can be readily outlined. First, a wavelet transform is applied to the 
original noisy signal. The wavelet coefficients are next filtered and 
the remaining coefficients are finally back-converted into the time 
domain to form the “clean” denoised signal. In [1] the authors 
proposed an empirical Wiener-filtering in the wavelet domain for 
the signal estimation in noise conditions and the method was 
implemented in [2] for the particular case of ECG signals. The 
empirical filtering in [1] seems to be particularly suitable for the 
ECG signal denoising, helping to the rigorous preservation of the 
useful waveform. Thus, using a wavelet basis function with short 
temporal support in the pilot estimation stage allows a good 
preservation of the areas around the QRS complex. On the other 
hand, the use of wavelets with good frequency localization in the 
second stage of the algorithm refines the shapes of P and T waves 
[2].  

Note that the Wiener filter could be regarded as a particular 
case of a MAP filter [3]. There are two key aspects that ensure the 

success of such a filtering technique: realistic a-priori assumptions 
regarding the statistical properties of both signal and noise 
components and a good estimation of the parameters that describe 
these properties. In this paper, we propose an improved denoising 
method, based on high accuracy estimation of the statistical 
parameters of the wavelet coefficients. This improved estimation 
relies on the diversity enhancement of the signal to be processed. 
Furthermore, realistic a-priori assumptions regarding the statistical 
properties of the wavelet coefficients are made, well adapted to the 
characteristic shape of the ECG signal. The method especially 
considers the suppression of wide band EMG noise, but good 
practical results are provided for the power-line interference too.  

In the particular field of ECG signals, the evaluation of the 
denoising quality is not a trivial task. Exact preservation of the 
diagnostically essential waveforms is critical. Although the 
classical parameters, such as SNR or mean-square error (MSE) 
improvement remain important measures, they do not provide a 
complete image of the denoising quality in this case. Thus, in this 
particular field, slightly different measures are also used: the 
correlation between before and after-denoising waveforms, the 
degree of the signal smoothness after denoising (highlighting the 
quality of P and T waveforms preservation) [4], the visual analysis 
of the ST-T artifacts (ripples caused sometimes by wavelet based 
treatments) [2,4], the RS distortion [2,5], and even the clinical 
evaluation of the denoised signal [6]. Unfortunately, all these 
approaches view the denoising as an independent process and 
consequently do not try to evaluate its performance in correlation 
with the following steps of the processing chain. Indeed, the ECG 
automatic processing implies signal denoising, elementary 
waveforms segmentation, parameters extraction and signal 
classification. In this context, the performance evaluation for our 
algorithm will also take into account the denoising effect on the 
automatic signal segmentation stage.   

In section 2, the architecture of the proposed system is 
presented. Experimental results are reported in section 3, while the 
final section is dedicated to concluding remarks. 

2. PROPOSED DENOISING SYSTEM 

The architecture of the proposed denoising system is described in 
figure 1. To the input we get the useful signal (s) additively 
perturbed by a Gaussian colored noise (p): 

psx                                       (1) 
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The system in figure 1 implements a classical MAP filtering in the 
wavelet domain W2. The estimation of the statistical parameters of 
the wavelet coefficients is made using a "pilot" signal. The pilot is 
obtained by hard-thresholding the Haar wavelet coefficients of the 
noisy signal (the "Sh" operator, figure 1). For W2 transform we 
have compared two redundant wavelet transforms, providing an 
enhanced diversity of the signal to be processed. Their 
performance is presented in section 3. The sources of diversity are 
the type of wavelet mother used in the computation of the discrete 
wavelet transform (DWT) [7] and the circular translation of the 
signal samples respectively [8]. In the first case we consider L1

different wavelet mothers. In the second one, L2 circular 
translations of the signal samples are used, but only one wavelet 
mother. The two transforms are known as diversity-enhanced DWT 
(DEDWT) [7] and translation invariant DWT [TIDWT] [8]. In 
either of cases, we obtain to the output of the wavelet transform L 
(with L=L1, or L=L2) sequences of discrete wavelet coefficients: 

L,...,1l,nuw lll                                 (2) 

lu and ln denoting the useful and the noise coefficients 
respectively, for the l-th set of wavelet coefficients. The MAP 
estimation of lu is: 
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In the following, we will consider a Gaussian distribution for the 
noise coefficients (pn) and a Laplacian distribution for the useful 
signal coefficients (pu). In fact, the wavelet transform of an ECG 
signal consists into a small number of high value wavelet 
coefficients (especially marking the limits of the electrical activity 
zones) and a large number of small value coefficients (for the slow-
evolution portions of the ECG). A heavy-tailed distribution for 
these coefficients seems therefore far more realistic than a 
Gaussian-one, and the particular case of a Laplacian probability 
density function (pdf) becomes attractive by its computational 
tractability. Consequently, we take: 

                     (4) 

In figure 2, the empirical histogram of the detail wavelet 
coefficients for three decomposition scales is fitted on the 
theoretical Laplacian pdf, in order to support our work frame.  
Under the considered hypothesis, the equation (3) becomes: 
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Finally, the solution of (5) can be expressed as: 
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where (X)+=X for X>0 and 0 otherwise. In the equation (6), we 

denoted by 2
n

l   the noise variance and by u
l  the standard 

deviation of the l-th set of useful signal coefficients. In practice, 
these parameters are not known and therefore they must be 
estimated. The relation (6) reduces to a soft-thresholding of the 
noisy coefficients [3]. 
Note that the wavelet transform of the ECG signal will contain 
zones of high-amplitude coefficients (marking the ruptures in the 
signal) that alternate with areas of small-amplitude coefficients. 

Therefore, u  must be locally adapted, in order to accurately track 
these variations.  Using the wavelet coefficients of the pilot signal, 
this parameter is separately estimated for each coefficient, using a 
sliding window: 
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where )i,j( represents the wavelet coefficient of the pilot signal, j 
standing for the decomposition scale and i for the position within 
the scale.  is the length of the sliding window. To the limit, even 
the choice of =1 provides satisfactory results, since experimental 
work showed that increasing the window length does not lead to a 
significant gain. For the noise variance estimation, we use the 
wavelet coefficients of a "purely noise" signal, obtained as the 
difference between the pilot estimation and the initial signal. The 
variance is then calculated at each decomposition level as being 

Fig.1 :  Architecture of the denoising system. 
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Fig. 2: Empirical histogram fitted on the theoretical Laplacian pdf. 
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simply the variance of the purely noise wavelet coefficients at that 
level. Thus, the MAP filtering becomes locally adapted. Indeed, for 
each noisy wavelet coefficient lw(j,k), the threshold value for the 
soft-thresholding operator defined by (6) is different. 

In order to obtain the denoised signal, the inverse transform is 
applied to the L sets of wavelet coefficients. In the case of 
DEDWT, this consists in applying the L1 correspondent inverse 
discrete wavelet transforms (IDWT). For TIDWT, each set of 
wavelet coefficients is converted into the time domain using the 
same IDWT and then each version of the signal is correspondingly 
un-shifted [8]. In either case, we have L different versions of a 
signal estimated in an “optimal” manner denoted 

by L,...,1l),m(sl . The final result is obtained by averaging the 

correspondent samples of these versions: 

L

1l
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L

1
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Note that the averaging operation will still eliminate part of the 
residual noise that remained after the MAP filtering of the wavelet 
coefficients. Without loss of generality, we can assume that the 
residual noise is a zero-mean stationary Gaussian process, whose L 
different realizations are the noise samples that perturb the 
underlying “original” signal. Therefore, any sample-by-sample 
averaging operation will tend to cancel-out these noise artifacts and 
to preserve the useful signal. The effectiveness of DEDWT was 
illustrated in [7]. Furthermore, in the case of TIDWT, averaging 
over shifts significantly reduces the artifacts near the 
discontinuities, which are inherently connected to the denoising 
with the decimated version of the DWT [8].  
In some cases, a second iteration of the method could be 
performed. Thus, the denoised signal obtained after the first 
iteration is reused as an improved version of the pilot signal. The 
MAP filtering procedure is next performed once more on the 
noised signal.

3. RESULTS 

We tested our algorithm on a large number of ECG signals from 
the CHU Brest database. The sampling frequency for these signals 
is of 1000 Hz, with a 16 bits/sample resolution. The method was 
tested in both artificially generated and real noise conditions. For 
the generation of the synthetic noise, a second-order AR-process 
was used, resulting in a colored Gaussian noise. This simulates the 
physical EMG noise, which is a wide-band colored signal, whose 
dominant energy spans in the 50 – 150 Hz range.  

In order to obtain the pilot estimation, we shrinked the Haar 
coefficients of the noisy signal, with the threshold value 

Mlog2)j(s)j(T , where s(j) represents the standard deviation 

of the noisy wavelet coefficients at the decomposition level j and 
M is the length of the data block [9], namely M=4096 samples. For 
the second stage of the algorithm, we have chosen for DEDWT 
implementation L1=10 different wavelet mothers with good 
frequency localization, from the Daubechies, Coiflet and Symmlet 
families. In the case of TIDWT, we used the "fully" TIDWT [8], 
which averages over all circulant shifts of the signal. That is, in this 
case, we get L2=4096. The wavelet mother used was Daubechies-8, 
chosen due to its similarity to the ECG trace. 

In order to evaluate the performance of the proposed method, 
we used five "clean" ECG records of 60 second each. Artificially 

generated noise was added to the useful signal, resulting in SNR 
ratios between 10 and 20 dB.  The output SNR is calculated for the 
entire ECG signal as well as for the fragments delimiting the P 
wave, the most sensitive to noise (this last measure is denoted by 
PwSNR). For each input SNR the experience was repeated 10 
times and the results were averaged. The number of iterations of 
the method was optimized in order to maximize the output SNR. 

Figure 3 illustrates the dependence between the input and 
output SNRs obtained by applying our method. The results are 
compared with other results reported in the literature. The use of 
TIDWT provides the best overall performance: a gain of about 1 
dB compared to the DEDWT. Between the other methods, it is the 
method in [5] that provides comparable results, but this method 
uses more complex preliminary operations as beat splitting and 
alignment. Yet, this comparison must be regarded with 
circumspection, since the work databases are different.    
In the case of the P wave denoising, the important variance of the 
results made undesirable an averaging operation in order to obtain 
a single PwSNR curve, as in the case of the overall SNR. However, 
the TIDWT provides superior results in all cases, with a maximal 
gain between 0.82 dB (test signal number 3) and 1.7 dB (signal 1). 
The PwSNR performance for these two particular examples is 
illustrated in figure 4. It must be also noted that for the entire signal 
set and for both wavelet transforms used, the PwSNR improvement 
is significant: for an overall input SNR of 22 dB or less, the 
denoising gain for the P wave is always superior to 10 dB.  

Next, the denoising influence on the automatic P wave 
segmentation process was studied. 
The segmentation method used in this purpose was explained and 
implemented by the authors in [10]. The method captures the 
dependencies that exist between the wavelet coefficients situated at 

Fig.3: SNR denoising performance in colored Gaussian noise. 

Fig.4: PwSNR denoising performance: two illustrative examples. 
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different decomposition levels in  the form of a probabilistic 
Markov tree with hidden states. In this context, we added 
synthetically generated noise to five ECG signals for which the 
automatic segmentation procedure provides very good results. The 
overall considered input SNR was between 10 dB and 20 dB. In the 
P wave region, this corresponds to low and very low PwSNRs (< 2 
dB in all the cases). The error measure is the difference between 
the automatically detected limits of the P wave in the case of the 
denoised signals, with respect to the manually annotated database. 
For each considered signal, a number of 20 P waves were 
segmented, and the errors were averaged in order to obtain the 
mean segmentation error, for both the onset and the end of this 
wave. For the whole signal subset, the test showed very promising 
results. The automatic detection error of the P wave was in almost 
all cases inferior to the tolerable error, which is of 25 ms 
accordingly to the cardiologist, beginning from an input SNR of 10 
dB. There was a single exception (one test signal), for which the 
tolerable error was obtained for 14 dB. This suggests that our 
method can be considered for the correct segmentation of relatively 
low-SNR signals.  

In order to provide a deeper analysis of the way that the 
denoising procedure can influence the segmentation, we applied 
our method as a pre-treatment step for 25 relatively clean signals 
from CHU Brest database, that were next segmented using the 
procedure in [10]. The segmentation results for P wave were 
compared with the case where another denoising procedure [11] is 
applied (a SURE filtering [12], followed by a Wiener filtering with 
the protection of the QRS coefficients) (see table 1). 

The results in table 1 show that our method does not degrade 
the useful P waveform by excessively shrinking the coefficients in 
high SNR conditions. Moreover, this pre-treatment consistently 
improves the segmentation results.  

For the validation of our method in real conditions, we 
applied it on a high number of ECG signals perturbed by real noise. 
The signals are raw data, provided by Task Force Monitor 3040i, 
from CNS Systems. In figure 5, the denoising result for such an 
ECG signal is shown, illustrating the effectiveness of our method. 
In figure 5(a), we have a portion of the input noisy signal. A “fist 
look” over this signal could lead us to the conclusion that the noise 
is not white. In figure 5 (b), the denoised signal is shown. The 
noise is effectively removed, and the signal preserves its useful 
waveform characteristics. 

4. CONCLUSIONS 

In this paper an effective, low-complexity method for the denoising 
of the ECG signals has been presented. This method consists on a 
MAP filtering in the wavelet domain, under realistic a-priori 
assumptions for the ECG wavelet coefficients statistics. The 
filtering is made in the domain of a diversity-enhanced wavelet 
transform, which provides robustness and superior performance to 
our method. The performance evaluation is realized by measuring 
the SNR improvement factor and the degree of influence on the 
automatic segmentation of the P wave. The results are very 
promising, showing an excellent SNR improvement and positive 
influence on the automatic P wave segmentation procedure. 

Furthermore, the method allows the correct segmentation of low 
SNR ECG records. Tested on real ECG signals affected by noise, 
the method also showed good results, effectively eliminating the 
noise and preserving the shape of the useful waveforms. 
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 Method in [11] DEDWT TIDWT 
Onset Error 11.16 ms 11.01 ms 10.22 ms
End Error 11.37 ms 8.87 ms 7.99 ms 
Segmentation Error Rate 15.96 % 15.2 % 13.46 % 

Table 1 : Denoising effects on the automatic segmentation of the 
P wave. 

a)

b)

Fig. 5:  Denoising method applied on ECG affected by physical 
sources of noise: the acquired signal (a) and the processed signal (b). 
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