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ABSTRACT

A method for classification of sEMG recordings based on the time-

varying covariance patterns between sEMG muscle channels is 

proposed.  The proposed eigenspectral feature vector appears to 

enhance classification of sEMG patterns with an SVM classifier. 

The method is shown to be more reliable, robust and enhances 

classification between stroke and normal subjects, compared to

standard analysis methods that examine each muscle individually. 

This simple, easily-implemented, biologically-inspired approach 

appears to be a promising means to monitor motor performance in 

healthy and disease subjects.

1. INTRODUCTION

Pattern classification of surface electromyographic (sEMG) signals

from the simultaneously recordings of the activity of muscles is a 

topic of great research importance in the area of motor behavior, 

with implications for neural prostheses development and diagnosis 

of diseases involving the motor system. Examples include the 

classification of upper arm movements [1] and classification of 

reaching abilities in spinal cord injury patients [2]. In this paper, 

we are particularly interested in classification of reaching 

movements in healthy and stroke subjects using sEMG data. 

A typical classification application is comprised of two major 

components: features selection and the decision-making algorithm 

(classifier). The selection of the most appropriate features is often

the most challenging. Many classifier approaches have been 

proposed in the literature, which can usually be divided into two 

categories: data-driven and model-driven. The former is most 

widely used due to its simplicity and generality and include such 

methods as self-organizing maps and machine learning based 

schemes such K-nearest neighbors, support vector machine and 

neural network analysis [3]. In this study, we focus on the widely-

applied linear support vector machine (SVM) approach since it is a 

powerful tool in classification and pattern recognition, commonly 

used in many areas, and has been shown to provide excellent 

classification performance [4].

One of our major concerns was to extract appropriate features 

from sEMG data for this reaching classification problem and we 

therefore appeal to contemporary developments in theoretical 

neuroscience for guidance. Recent work has suggested that 

complex movements are implemented by low-dimensional basis 

movements encoded in the spinal cord [5]. These basis movements 

or “synergies” are distributed across several muscles. Moreover, 

examination of synergies may provide a fruitful avenue to 

succinctly summarize the often complex changes in muscle 

activation that are seen in disease states, such as motor 

impairments after stroke. Yet traditionally, sEMG recordings are 

examined individually, in univariate fashion. Based on the 

following statistic testing,
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a simple inspection of basic statistical properties of sEMG 

recordings (Figure 1) suggests strong covariance between muscles 

during natural movements that is relatively insensitive to

preprocessing strategies.  This observation motivates us to use 

features based on the covariance patterns.
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Figure 1: Covariance of sEMG recordings. A histogram of g(X) 

(Eqn 1), where X is a number of channels by timepoint matrix of 

sEMG recordings (see Methods). Note that in all cases, a 

significant covariance between muscles can be detected.

A number of factors influence the amplitude of the sEMG, 

affecting the reliability of this feature: exact positioning of the 

electrodes, movement of the muscle with respect the electrodes, the 

amount of subcutaneous fat, and the impedance of the skin. 

Examining the relationships between muscles may therefore prove 

more robust and reliable in monitoring muscle function.

We therefore propose a classification method which extracts 

features from the time-varying covariance between sEMG 

recordings in normal subjects and subjects recovering from 

differing severity of stroke. We demonstrate that the proposed 

method is more reliable than examining muscles individually, and 

is monotonically related to the severity of stroke, as assessed by 

traditional subjective clinical scales.

II ­ 11881­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



2. METHODS

In this section, we first introduce the experimental procedure for 

recording sEMG data. Next we propose the feature selection based 

on the covariance patterns between muscles and then the SVM 

classifier is explored for the sEMG classification during reaching 

movements.

2.1. Experimental Setup and sEMG Data Collection 

Twenty stroke subjects with ages ranging from 49 to 72 years were 

recruited. The severity of motor impairment of the paretic arm was 

assessed by upper extremity motor component of the Fugl-Meyer 

(FM) scale and by the Modified Ashworth Scale (MAS). In 

addition, ten healthy subjects of similar age were recruited to serve 

as the control group of the experiment.

After suitable consent was obtained, each subject was first 

seated in a chair with their hands on the thigh and was instructed to 

reach and touch a fixed target after hearing an auditory cue. The 

target was located in the subject’s mid-sagittal plane at shoulder 

height, and its distance with the subject was adjusted such that it is 

just within the workspace of the paretic arm of the stroke subject or 

non-dominant arm of the healthy subject.  For every subject, the 

reaching movements were performed fifteen times on each side, 

resulting in thirty trials per subject. 

The electrical activity of seven muscles (the anterior and 

lateral deltoid, the triceps (long head and lateral), the biceps 

brachium, latissimus dorsi, and the brachioradialis) was recorded

using surface electrodes. A bipolar montage was used to minimize 

the effect of crosstalk. The 7-channel sEMG signals were 

amplified, sampled at 600 Hz, and high-pass filtered at 20Hz to 

reduce movement-related artifact. Pleaser refer to [6] for further 

details on the sEMG experimental procedures. 

2.2. Feature Extraction

Conventionally, the classification of sEMG signals has been

performed by using the linear envelope of the signal as the input 

feature. One widely used processing technique for extracting the 

linear envelope of single channel EMG is rectification and low-

pass filtering, or nearly equivalently, the moving root-mean-square 

(RMS) method. The moving RMS value is found by sliding a 

window across the signal with a fixed step size, and at each time 

position, RMS of the data inside the window is calculated. 

As previously mentioned, the studies in muscle synergies 

suggest that the muscles are activated in a coordinated fashion. 

One of our recent studies [7] and Fig.1 suggest that sEMGs 

recorded from spatially distributed muscles may be correlated with 

each other. These observations lead us to the following feature 

selection method which examines the covariance patterns between 

sEMG recordings:

1. Normalization: Since the amplitude information of sEMG itself 

is not reliable, we first normalize the raw sEMG signals to zero 

mean and unit variance, and then resample them such that all 

recordings have equal length to account for the slight variability in 

reaching times towards the target.

2. Extract feature vector based on the time-varying largest 

eigenvalue: For each trial, a moving window of width 300 points

(~0.5s) is slid across seven channels with a step size of 25 points. 

At each time position, the covariance matrix and its largest 

eigenvalue, max, are computed from the data points inside the 

moving window. As the window slides across, a vector of 

eigenvalues, v,  is generated and it can be written as follows, 

)2(...,3,2,,0 NNTTTTv

where T is the step size, and )(nT denotes the largest eigenvalue 

of the covariance matrix calculated using the data from t = nT to t 

= nT + 300 .

3. Further feature dimension reduction: Due to the duration of 

reaching movements, the resulting dimension of the largest-

eigenvalue-based feature vector may be unacceptably high for 

suitable classifier learning. Thus we project the original feature 

vector to a lower-dimension space using principal component 

analysis (PCA) [8]. The resulting PC coefficients are used as 

features for final classification.

While a range of features based on the covariance matrix 

could be extracted (e.g. the entire eigenspectrum) preliminary 

investigations revealed that the largest eigenvalue most reliably 

distinguished between the non-paretic side and paretic side in 

stroke subjects (Figure 2). It therefore motivated us to employ it as 

an efficient feature to distinguish healthy and stroke subjects. 

2.3. Pattern Classification

The classifier used in this paper is the linear Support Vector 

Machine (SVM). It attempts to separate members of two classes by 

first projecting the training samples in the input space to a higher-

dimensional feature space. In the feature space, SVM finds a 

hyperplane that will maximize the margin between the hyperplane 

and the closest training samples to avoid the potential problem of 

overfitting. The hyperplane is represented as a linear combination

of feature vectors on the decision boundary between two classes. 

Interested users are referred to [9] for details. 

Inputs to the classifier are generated by applying the proposed 

feature selection method to the data collected from the paretic arm 

of stroke subjects and the non-dominant arm of control subjects, 

resulting in a set of time-varying eigenspectral vectors each 

containing 133 elements. The vectors were then collectively 

projected to a lower-dimension space using PCA and the resulting 

PC coefficients were used as features. Figure 4 shows an example 

where the vectors obtained from severe stroke subjects and healthy 

subjects are projected to a two-dimensional space by using the first 

two principal components. To investigate the effect of dimension 

reduction on classification, both the original eigenspectral vector 

and the dimension-reduced coefficient vector will be examined for

classification between stroke and healthy subjects in Section 3. 

The classification performance was evaluated using the leave-

one-out cross-validation technique. 

3. RESULTS AND DISCUSSION

In this section, we study the performance of the proposed 

classification method by examining the sEMG data collected 

during the reaching movements.  

First, we demonstrate that the feature vector extracted from 

multiple muscles simultaneously provides more insight into the 

different reaching movement patterns of healthy and stroke 

subjects than one from a single muscle. As shown in Figure 2, the 

time-varying eigenspectral patterns are consistent across trials on 

the same side, and the difference between the paretic and non-

II ­ 1189



0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

% Movement

L
a
rg

e
s
t
E

ig
e
n
v
a
lu

e
o
f

M
o
v
in

g
-w

in
d
o
w

C
o
v
a
ri
a
n
c
e

M
a
tr

ix
T ime-varying Eigenspectral Vector

Figure 2. Time-varying eigenspectral patterns obtained from non-

paretic side (solid line) and paretic side (dotted line) of a stoke 

subject. Note the consistency between reaching trials.

paretic sides is evident. On the other hand, though the lateral

deltoid muscle was reported as revealing significant differences

between healthy and stroke subjects using the same data set [6], the 

moving-RMS profiles from this single muscle for the paretic and 

non-paretic sides of the same subject are almost indistinguishable

(Figure 3). Moreover, the trial-to-trial variability was significantly 

larger compared to the eigenspectral patterns. 

       To measure the correlation between the severity of stroke and 

the classification performance, the stroke subjects were divided 

into three categories based on their FM score: Severe with FM 

score below 25, Moderate with FM score between 25 and 50, and 

Mild with FM score above 50. Classification was then performed 

comparing Severe, Moderate and Mild separately to normal 

subjects.

We now proceed to evaluate the classification performance of 

the proposed scheme. In comparison with Figure 4, the projected 

PCA coefficients based on the RMS feature vectors from a single

sEMG channel data is shown in Figure 5. It is clear that the
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Figure 3. Moving-RMS profiles patterns obtained from non-

paretic side (solid line) and paretic side (dotted line) of a stroke 

subject.
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Figure 4.  An example of PCA-based dimension reduction. The 

original time-varying eigenspectral vectors are projected into a 

two-dimensional space.
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Figure 5.  An example of PCA coefficients map based on a single 

channel of sEMG data. Compare to Figure 4.

patterns of the healthy and stroke subjects are not easily 

distinguishable from Figure 5. For the proposed scheme, to 

examine the effect of dimension reduction, two feature vectors are 

computed to train the SVM classifier: the original eigenvalue 

vector, and the coefficient vector after PCA projection.  

Classification rates obtained from applying SVM to the original 

feature vectors and the dimension-reduced ones is shown in Table 

1. In general we can see that the two types of feature vectors yield 

similar classification performance. For the reduced ones, different 

choices of vector dimension, ranging from 2 to 70, are investigated 

to examine the effect of dimension reduction. No general tendency

can be concluded. However, it seems that the classification 

performance was relatively insensitive to the dimension of input

features, and we suggest to use N=3 or 4 for the good trade-off 
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Table 1.  Classification rates for different severities of impairment 

using different feature vectors.

between performance and computational complexity. The average 

classification rates for Severe, Moderate and Mild vs. Healthy was

97.37%, 78.97%, and 70.64%, respectively. Note that the 

classification rates are monotonically related to the severity of the 

impairment. 

When all stroke and healthy subjects are classified jointly, the 

histogram of the decision values (Figure 6) also confirms the 

correspondence between the classification performance and 

severity of impairment. This observation suggests that the 

proposed method may provide a quantifiable metric of motor 

performance. 

4. CONCLUSION

Performing a reaching task is a complex interplay between brain 

regions subserving motor planning, vision, attention, and motor 

execution, and impairment of some of these will not be captured by 

the clinical scale used here to monitor functional independence. 

Finding features that are relatively invariant to inter-individual 

differences, yet still sensitive to detect severity of impairment is a 

challenge. The proposed method is a first step towards this goal, as 

the exact combination of muscles may vary across subjects, but 

this will not affect the eigenvalues (as opposed to the eigenvectors) 

of the sEMG recordings over a specific time window. Also, by 

looking at the eigenvalues, the results would be expected to be 

relatively insensitive to the exact positioning of the electrodes, a 

problem plaguing amplitude based classification schemes.

The proposed eigenspectral feature vector appears to enhance 

classification of sEMG patterns with an SVM classifier. Moreover, 

since the classification rate was monotonically related to the 

severity of stroke (as estimated by subject clinical scales) it 

suggests that this method could be extended into a quantifiable 

assay of motor performance.
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Number of 

Dimensions
Mean

N = 3 N = 30 N = 50

No

dimension

Reduction

Severe vs. 

Healthy
97.89 97.29 97.29 96.99 97.37

 Moderate 

vs. Healthy
80.27 80.55 75.07 80.00 78.97

Mild vs. 

Healthy
69.57 67.0 71.82 74.19 70.64
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