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ABSTRACT
Separation of event related potentials (ERPs) is being inves-

tigated in this paper by means of a new constrained blind

source extraction (BSE) technique. Specifically, the P3a and

P3b subcomponents are extracted from an ERP incorporat-

ing some prior knowledge of the desired signals. The method

reliably extracts the desired P300 subcomponents with great

accuracy. One advantage of BSE algorithms over Blind Sig-

nal Separation (BSS), which have been used in EEG research,

is that the algorithm focuses on one source instead of trying

to extract all of the sources simultaneously which involves

indeterminacy in the number of sources. To testify the perfor-

mance of the algorithm, some experiments are shown which

are performed on real EEG data.

1. INTRODUCTION

Event-related potentials (ERPs) are electroencephalograms

(EEGs) which directly measure the electrical response of the

cortex to sensory, affective and/or cognitive events. The good

temporal resolution offered by ERPs allows accurate study

of the time course of information processing unavailable to

other neuroimaging techniques. On the other hand, spatial

resolution in that approach is limited. In addition, overlap-

ping components of the ERP which represent specific stages

of information processing are difficult to distinguish [1] [2].

An example is the P300 wave, a positive ERP component

which occurs with a latency of about 300ms after novel stim-

uli, or task relevant stimuli, requiring an effortful response

on the part of the individual under test [3] [4] [1] [5] [2].

The P300 wave represents cognitive functions involved in ori-

entation of attention, contextual updating, response modula-

tion, and response resolution [3] [1], and consists of multi-

ple overlapping subcomponents, two of which are identified

as P3a and P3b [5] [2]. P3a reflects an automatic orienta-

tion of attention to novel or salient stimuli independent of

task relevance [5] [6]. Prefrontal, frontal and anterior tem-

poral brain regions play a major role in generating P3a giv-

ing it a frontocentral distribution [1] [5]. In contrast, P3b

has a greater centro-parietal distribution due to its reliance

on posterior temporal, parietal and posterior cingulate mech-

anisms [1] [2]. P3a is also characterised by a shorter latency

and more rapid habituation than P3b [5] [2]. Figure 1 illus-

trates some typical P3a and P3b waveforms from temporal-

basal and temporo-superior dipoles [7].

P300 has significant diagnostic and prognostic potential

especially when combined with other clinical examination [4]

[2]. However, in order for this to be fully realised, efficient

and reliable methods for separating P300 sources and its sub-

components must be established [4].

The most common method of averaging the EEG over a

number of trials1 cannot reliably distinguish the small differ-

ences between the various subcomponents since they tempo-

rally overlap. Some common signal processing methods used

to overcome this limitation are based on Blind Signal Sepa-

ration (BSS) [8] [9] [10] and Least squares approaches such

as [11] [12]. In this paper we use a BSE method which ex-

tracts only one signal at a time and can be modified to extract

only the sources of interest.

Fig. 1. Some examples for P3b (1 and 2) and P3a (3 and 4)

signals and their corresponding typical locations.

2. CONSTRAINED BLIND SIGNAL EXTRACTION

The main advantages of BSE over BSS can be the following:

(a) The algorithm concentrates only on the signals of interest

1in this context trial means the recorded response of the brain after a stim-

uli has been applied
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based on their properties (b) in general BSE algorithms are

much simpler and (c) they can be easily modified for a number

of situations. In this paper we use prior knowledge of the

shape and latency of P300 signals to obtain the signals. This

is done by using a constraint function, which is imposed on

the original BSE cost function.

We start with the normalised kurtosis cost function, which

estimates the deviation of a random variable from Gaussian-

ity. For kurtosis equal to zero the signal is Gaussian, for pos-

itive values it is super-Gaussian and for negative values sub-

Gaussian. From the Central Limit Theorem it is known that

a signal consisting of a mixture of different signals with dif-

ferent probability density functions tends to have a Gaussian

distribution. So, if we try to maximise the absolute value of

the kurtosis of the signal it will be separated from the mixture.

In the BSE model the output of the algorithm is described

as [13]:

y = wT X (1)

where y is the output vector of size 1×T (T is the number

of samples), w is the unmixing vector (N × 1, where N is the

number of electrode signals) obtained by the algorithm and X
is the data matrix (N ×T ) consisting of the electrode signals.

The cost function is:

Jm(w) = −1
4
|kurt(y)| (2)

where kurt(y) is the normalised kurtosis and is given by:

kurt(y) =
E(|y|4)
E(|y|2)2 − 3 (3)

where E() denotes the expectation. This leads to the follow-

ing online adaptation rule [13]:

w(k + 1) = w(k) + n(k)ϕ(y(k))x(k) (4)

where

ϕ(y(k)) = b(
m2(y(k))
m4(y)(k)

y(k)3 − y(k))
m4(y(k))
m3

2(y)(k)
(5)

and

mq(k) = (1 − n0)mq(k − 1) + n0|y(k)|q (6)

where k is the iteration number (and sample number), mq is

the qth moment and n0 ε (0, 1] adjusting the influence of the

previous estimate of the moment and the current estimate.

The constraint is imposed upon the normalised kurtosis

cost function and utilises prior knowledge about the P300

shape and latency. The procedure is to obtain a reference

P300 signal and in turn a vector wopt which minimises the

Euclidean distance between that reference and the data in the

following way:

Jc(wopt) = ||yref − woptX||2 (7)

where ||.||2 represents the Euclidean distance. The solution to

this is the common minimum-norm solution:

wopt = (XXT )−1XyT
ref (8)

Then, we need to minimise the distance of the obtained w
from (4) and wopt from (8). So, we want to minimise:

d(w) = ||wopt − w||2 (9)

This is the constraint cost function placed in the original

cost function (2) according to the theory of penalty parame-

ters. Hence, the adaptation rule becomes2

w(k+1) = w(k)+n(k)ϕ(y(k))x(k)+K(w(k)−wopt) (10)

where K is the penalty parameter. It should not be too high in

order not to overcome the effect of the main cost function or

too low so its effect is too small. The selection of the appro-

priate value for K will be discussed in section 3. The product

yLS = woptX can be considered as the closest representation

of yref that can be obtained by unmixing the data such as

described by the model in (1).

2.1. Reference signal

The reference signal yref used to calculate wopt is obtained

via the following method. By prior knowledge about the shape

and latency of a usual P300 component and considering a

number of trials of the same experiment we can provide a

reference signal. This can be achieved by averaging of all

the relevant trials3 of an EEG to obtain a temporally aver-

aged ERP of dimensions N × T , where N is the number of

electrodes and T the number of samples. Then we perform a

spatial averaging of all the electrode signals and select the ap-

propriate time period corresponding to the appropriate P300

subcomponent(for example 250-300ms for P3a), zero the rest

and we get a signal of dimensions 1 × T . This is the yref

signal which is used in (8) to obtain wopt. Two yLS examples

can be seem in Figures 3 and 5.

3. EXPERIMENTAL RESULTS

The EEG data were recorded using a Nihon Kohden model

EEG-F/G amplifier and Neuroscan Acquire 4.0 software. EEG

activity was recorded following the international 10-20 sys-

tem from 15 electrodes. The reference electrodes were linked

to the earlobes. The impedance for all the electrodes was

below 5kΩ, sampling frequency Fs=2kHz and the data were

subsequently bandpass filtered (0.1-70Hz). This frequency

range was chosen to be compatible with [14].

2the third term should be 2K(w(k) − wopt) but the 2 is absorbed by the

penalty parameter so it can be omitted
3some trials do not produce a P300 component
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Subjects were required to sit alert and still with their eyes

closed to avoid any interference. Also, to avoid any mus-

cle artefact the neck was firmly supported by the back of

the chair. The feet were rested on a footstep. The stimuli

were presented through ear plugs inserted in the ear. Forty

rare tones (1kHz) were randomly distributed amongst 160 fre-

quent tones (2kHz). Their intensity was 65dB with 10ms and

50ms duration for rare and frequent tones respectively. The

subject was asked to press a button as soon as they heard a low

tone (1kHz). The ability to distinguish between low and high

tones was confirmed before the start of the experiment. The

task is designed to assess basic memory processes. ERP com-

ponents measured in this task included N100, P200, N200 and

P3a and P3b.

After obtaining the data, they were temporally averaged

for all event related trials (40 events). The algorithm automat-

ically obtains the reference signal, wopt and hence yLS . The

algorithm was applied to many sets of data and it extracted

the desired components successfully. The obtained P3a and

P3b were more highlighted compared to the reference signal

and their shape was more in agreement to typical P3a and P3b

shapes. Some typical obtained signals can be seen in Figures

2 and 4 while the corresponding yLS signals are shown in

Figures 3 and 5 and the spatio-temporal averaged reference

signal4 is shown in Figure 6. As can be seen from the fig-

ures the constrained method obtains good representations of

P3a and P3b. Their respective latencies are in agreement with

prior physiological research and their shapes are more smooth

than those of the yLS signals. This is expected since the al-

gorithm tries to obtain an output close to the yLS but also as

less mixed as possible.

By comparing the resulting signals with the unconstrained

case useful insights can be obtained as to the selection of

the appropriate parameters for the algorithm (such as the K
penalty parameter, the learning rate n and the n0 paratemter).

If K is set to zero the algorithm is unconstrained and the re-

sulting output is not the desired one. Gradually increasing the

K parameter starting from a small value (about 10−5) the al-

gorithm’s behaviour can be observed. At really small values

the influence of the constraint is minimal and does not pro-

duce valuable results. High values tend to make the algorithm

crash. A practical value that produces good results while the

signal is not very close to the reference is 10−4. In fact, the

value of K can be adapted and updated iteratively according

to the changes in the gradients of Jc and Jm. The learning

rate was set to 10−3 and it was reduced every iteration by 1%.

The n0 parameter was set to 0.5.

4. CONCLUSIONS

In this paper a robust constrained BSE method has been de-

veloped to extract the P3a and P3b signals from within an

4This signal is used to obtain the yref signals for P3a and P3b.

Fig. 2. The P3a signal obtained with the constrained BSE

algorithm.

Fig. 3. The yLS signal used to obtain the signal of Figure 2.

Fig. 4. The P3b signal obtained with the constrained BSE

algorithm.

Fig. 5. The yLS signal used to obtain the signal of Figure 4.
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Fig. 6. Spatio-temporal averaged EEG reference signal.

Fig. 7. Convergence of the algorithm for the signal of Figure

2.

EEG. The algorithm minimises the distance between a refer-

ence signal and the estimated output while trying to make the

output as less mixed as possible. The effect of the constraint

can be adjusted via the penalty parameter and in effect the al-

gorithm points the solution towards the desired signal. The

reference signal is obtained automatically by the algorithm

and the convergence is very fast (less than 30 iterations). The

algorithm was applied to real EEG data and P3a and P3b sig-

nals were separated successfully. Future work entails incor-

porating reference signals for more ERP components (P50,

N100, P200, N200), the adaptation of the optimisation para-

meters (such as K, n and n0) and the application to single-

trial EEGs.
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