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ABSTRACT 

To assist in the inspection of sleep-related diagnosis and 

research, an adaptive method for processing long-term 

polysomnography (PSG) is proposed in this paper. The 

extracted features of segmented PSG based on wavelet 

analysis can be used for clustering the segments with similar 

pattern into a group. The adaptive fuzzy clustering was used 

to estimate the clusters within the PSG recordings, the 

optimal number of clusters and the optimal features of an 

individual subject. The novel method with the adaptive- 

to-subject concept exhibits four advantages in comparison 

with other approaches: 1) Full automated, 2) adaptive to the 

diversity of physiological signals among subjects, 3) less 

sensitive to noise and artifacts, 4) effective visualization of 

analysis results for clinicians. The simulation results show 

the superiority of the proposed method in long-term PSG 

analysis. 

1. INTRODUCTION 

Polysomnography (PSG) is a set of measurements that 

includes electro-encephalogram (EEG), electromyogram 

(EMG), electro-oculogram (EOG), and other signal types 

for clinical medicine. The recognition of PSG into the 

different sleep states gives significant indications for the 

diagnosis and treatment for patients for sleep-related 

disorders [1]. Such applications normally required large 

quantities of prolonged PSG recordings, with length of more 

than several hours or even a day. Furthermore, interpretation 

and managing essential variation of physiological events by 

long-term PSG was a very tedious and time-consuming 

operation. To improve the efficiency of PSG inspection, the 

need of automatic processing and analysis is all too obvious 

in practice. 

To date, many automatic methods have been proposed for 

PSG processing. Most of these analysis methods tried to 

imitate visual inspection according to some standards, such 

as R&K rules [2]. The rule-based logics were used to deal 

with the extracted features of PSG [3, 4]. However, these 

methods suffered a critical problem, that is, the great 

diversity of biological activities among subjects. The 

pre-defined rules or threshold settings for the presence of 

some specific activities were most based on the empirical 

observations of clinicians [1]. The rule-based settings might 

be suitable for reviewing/diagnosis for clinicians, but may 

not be reliable for a robust/adaptive principle of accurate 

computer analysis. Recently, Agrawal and Gotman 

introduced a self-organization method based on k-means to 

cluster segments of all night PSG for sleep staging [4, 5]. 

This idea reduced the influence of the above-mentioned 

problems but there were still some problems of the methods: 

(1) the k-means clustering was known to be very sensitive to 

noise [6]; (2) the number of clusters of PSG recordings still 

needed to be defined by users: The problem is that mostly 

we were incapable to know the true number of clusters in a 

recording; (3) the fixed feature set was used for each subject: 

the analysis may not be reliable for every subject.  

Since the physiological activities are quite different 

between subjects, it can not reach optimal results for every 

distinct subject by extracting a fixed feature set for 

clustering/classifying the different patterns of bio-signals. In 

general, feature selection was an essential procedure in 

supervised learning used to minimize the classification error, 

but for unsupervised clustering, it was rarely mentioned in 

the literatures [7]. With a well-chosen feature set, the effect 

of noisy sample can be reduced and all the samples could be 

separated clearly. On the contrary, with the poorly-chosen 

feature set, the samples would hard to be differentiated in 

the feature space [7]. Therefore, an adaptive-to-subjects 

method for clustering long-term PSG with noise needs to be 

developed. 

To the best of our knowledge, the present study is the first 

attempt at applying adaptive-to-subject techniques to 

process the features of bio-signals and cluster the segments 

from a long-term PSG recording. To overcome the problems 

and achieve an optimal clustering result, the proposed 

system integrated several superior methods for signal 

processing, segmentation, feature subset searching, 

clustering, and validity measure into the overall 

wavelet-based analysis and adaptive fuzzy clustering 
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algorithms. The procedures of the proposed method are 

illustrated in Fig.1 and described in following sections.  

2. METHODS 

2.1 Subjects and Recordings 

The PSG recording for simulation was obtained from the 

Sleep-EDF Database in PhysioBank, labeled st2022j0 [8]. 

The recording was acquired from a 35-year-old woman who 

had mild difficulty falling asleep but was otherwise healthy. 

Four channels, horizontal EOG, FpzCz, PzOz EEG (standard 

10-20 electrode placement system) and submental EMG, 

were sampled at 100 Hz with length of about 8 hours. 

2.2 Wavelet-Based Multiresolution Analysis 

There were a large number of comprehensive applications 

based on wavelet transforms for biomedical engineering [9]. 

It contained filtering, detection, feature extraction and 

modeling for bio-signal analysis. In many applications, the 

discrete wavelet transform (DWT) is sufficient to satisfy the 

requirements of analysis and. The DWT is dyadic WT when 

the scaling parameter, a, is a number with power of two, i.e. 

2 ,ja j Z . Mallat’s fast algorithm for DWT is 

computed as follows [10]:  
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where Aj is called the jth approximation, or approximation at 

level j; Dj is called the jth detail, or detail at level j. The 

filters, h and g, used to decompose a signal are known as 

wavelet filters and scaling filters, respectively. 

Two primary rhythms alpha, beta and slow-wave activity 

of EEG, were extracted by the selected basis Symlet-8 

without suffering time-shift [10], as shown in Fig. 2. Since 

the WT is somehow a correlation measure between the 

signal and the wavelet basis, to select a temporal pattern 

similar to EEG rhythms, such as Symlet-8, can be capable to 

extract the dynamic variations completely. The alpha, beta 

rhythms and slow-wave activity were extracted by Symlet-8 

as the 2nd, 3rd details and 3rd approximation, respectively. 

Furthermore, the sleep spindles were extracted by Morlet 

basis which has similar pattern to spindles, and then an 

empirical threshold for sleep spindle was used to achieve the 

detections [11]. 

Segmentation 

Frequency-weighted energy (FWE), defined by the 

nonlinear energy operator (NLEO) [5], which is sensitive to 

the variation of energy and frequency in a signal. We use 

this idea to simultaneously estimate segment boundaries of 

long-term PSG recordings and divided them into quasi- 

stationary segments. After segmentation, the activity of 

signals tended to be similar within a segment, and different 

between segments.         

Fig. 1 The structure of automated PSG analysis 

A segmentation criterion is generated for the two EEG and 

the EMG channels as,
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where 2N is the sliding window size (in our experiments, N

was set as 1 sec). The segmentation criteria are linearly 

summed to obtain the overall segmentation criterion [5]. 

Segment feature extraction 

The feature vector describing sleep-related attributes are 

extracted in each segment by wavelet analysis. The 

following features represent each segment of the PSG [4]: 

amplitude and frequency-weighed energy (FWE) of three 

primary EEG rhythms and the EMG channel, presence of 

spindles in the frontal EEG channel, alpha-slow-wave index 

(ASI) and theta-slow-wave index (TSI) for the two EEG 

channels, and presence of eye-movement index (EMs) in the 

EOGs. Thus, each segment is parameterized by a 

14-dimensional feature vector. 

2.3 Adaptive Fuzzy Clustering 

Suppose that there were N segments in a PSG recording, 

and given a set of 14 extracted features in section 2.1. The 

proposed method can be adapted to subjects by selecting a 

feature subset of size m and estimating the number of 

clusters among N segments that leads to the best clustering 

result for each subject. 
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Fig.2 Wavelet-based EEG rhythms extraction 

Step 1: Feature subset searching 

Concerning the computational complexity and the 

optimality, we chose the concepts of Sequential Forward 

Floating Search (SFFS) method to generate feature subsets 

[7]. The effective method used “Plus l – take away r 

(features)” strategy and the values of l and r are determined 

automatically and updated dynamically. It provides close to 

optimal solution almost as well as branch-and-bound 

algorithm at a much lower computational cost [7]. 

Step 2: FPCM clustering 

The generated subset in the previous step was then fed 

into FPCM. FPCM was a robust clustering method that 

hybridizes the Fuzzy-C-means and Possibilistic-C-Means 

models, enjoys their benefits and eliminates the problems 

of them [6]. Since the membership of FPCM was not 

restricted to 1, the membership of noisy segments would be 

relatively lower than other segments. That is, the influence 

of noise and outliers was reduced. The parameters in FPCM 

models, m and , were both defined as 2 in our 

experiments. In order to find optimal number of clusters in 

the segment feature space, the number of clusters was set to 

c= 2 ~ 8 for iterative operation.

Step 3: Subset evaluation by cluster validity measure 

After iterative clustering procedures, the validity 

measure in this investigation was to estimate the 

“Goodness” of clusters by compactness and scatter 

separability of the clustered data. Many methods of validity 

measure have been proposed in the literatures, but some 

were effected critically by the noisy data and the poorly 

separated clusters. In practice, since physiological signals 

were easily contaminated by artifacts, the noisy data was 

existed in the extracted feature space. Therefore, we 

adopted a more reliable validity function, VWJS, to avoid the 

above-mentioned problems [12].

Repeat Step 1~3 until the search completes or 

minimizing the estimated validity measure. Finally, the 

optimal subset and the number of clusters can be obtained. 

The output of adaptive fuzzy clustering is the cluster 

centers and cluster labels for each segment. 

Step 4: Visualization 

  To display the large quantity of PSG analysis results 

consisted of segment lengths/boundaries, selected feature 

subset, segment clusters for clinicians is an essential work 

in clinical practice. The effective and clear presentation can 

further improve the efficiency of PSG inspection [5]. 

Therefore, the analysis results were presented in a 

compressed illustration form. The segments were merged 

into 30-sec segments (epochs) as a representative unit for 

the standard visually inspection. The merged epochs 

belonged to which cluster depended on which segment 

cluster occupies the largest fraction of the epoch. 

3. RESULTS  

  The simulation results of 8-hour PSG recordings are 

illustrated in Fig. 3. The selected feature subset for this 

subject by the proposed algorithm consisted of ASI, EMs 

energy of EMG and beta activity. The optimal number of 

clusters in this case was estimated as five. The colored 

signals in the five blocks are respectively the representative 

patterns for five clusters in the PSG recording. 

Comparatively, the signals have similar patterns within a 

cluster, but different between clusters. The chronological 

sequence (temporal profiles) that has been color coded to 

relate each 30-sec segment to a specific cluster. The 

duration of each segment in the sequence is proportional to 

the actual duration of PSG segments.

4. DISCUSSION 

According to Fig. 3 and the R&K rules [2], the signals of 

the blue and red clusters occupying the most portion of the 

temporal sequence can be inspected as the activities of the 

light sleep. Therefore, based on the results, the subject can 

be known to be most in the condition of light sleep. The 

other clusters represent the wakeful state, rapid-rye- 

movement sleep and artifact-contaminated were colored as 

green, yellow and purple in the sequence, respectively. The 

appearance of deep-sleep activity was few in this case and 

insufficient to form an individual cluster. Therefore, the 

results just match the sleep problems of subjects described 

in section 2.1. From the illustration, the physiological 

activity over several hours of a subject can be reviewed 

obviously and efficiently. 

The proposed method developed by wavelet-based 

processing and adaptive fuzzy clustering can be adaptive to 

the diversity of subjects with an accurate analysis. We 

believe that the advantages of each procedure make it more 

reliable and can be used in practice with an effective 

visualization for clinical usage.   
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Fig. 3 Representative pattern of clusters and chronological sequence of an 8-hour PSG recording
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