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ABSTRACT

This study proposes to use the analysis of physiological signals (elec-
troencephalogram (EEG), electromyogram (EMG), heart beats etc)
to control sound synthesis algorithms in order to build biologically
driven musical instruments. A real time music synthesis environ-
ment and algorithms are developed to map these signals into sound.
Finally, a ”bio-orchestra”, with two new digital musical instruments
controlled by the EEGs and EMGs of two bio-musicians demon-
strated this concept with a live concert on stage.

1. INTRODUCTION

Advances in computer science and specifically in Human-Computer
Interaction (HCI) have enabled musicians to use sensor-based com-
puter instruments to perform music [1]. Musicians can now use data
from different sensors (that reflect cardiac, or muscle activity or limb
position etc.) to control sound [2]. Simultaneously, Brain-Computer
Interface (BCI) research has shown that cerebral patterns can be used
as a source of control [3]. Indeed, cerebral and conventional sensors
can be used together [4] with the aim of producing a ’body-music’
controlled according to the musician’s imagination and propriocep-
tion.

Some research has already been done toward integrating BCI
and sound synthesis with two very different approaches. The first
approach is the sonification of the data [5]. This process can be
viewed as a translation of physiological signals into sound. The sec-
ond approach aims to build a musical instrument [6]. In this case,
the musician tries to use his physiological signals to control inten-
tionally the sound production. We did choose the second approach
essentially and decided to use the sonification for additional signals
to enrich the acoustical content.

In the following, we present the architecture we developed to
acquire, process and play music based on biological signals. Next
the signal acquisition and signal processing techniques are explained
and the results are given. We conclude with a brief discussion of the
sound synthesis implementation along with the instruments we built.

2. ARCHITECTURE

We intend to build a robust architectural framework that could be
reused with other biological data, other methods of analysis and
other types of instruments. Therefore the signal acquisition, the
signal processing and the sound synthesis are operated on different
virtual machines that communicate by the network (Fig. 1). The
data from different modalities are recorded on different machines.
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Fig. 1. System architecture

Once acquired, the data are sent to a Simulink program. Then they
are processed before being sent to the musical instruments, and the
sound spatialization and visualization routines via Open Sound Con-
trol. The musical instruments are build with Max/MSP. Below is an
outline of the main software and data exchange architecture.

2.1. Software

Biosignal analysis is achieved with various methods including wavelet
analysis and spatial filtering. Due to the flexibility of Matlab pro-
gramming, all the algorithms are written in Matlab code whereas the
signal acquisition from the EEG cap is made in C++. In order to bet-
ter adapt to variabilities between subjects, a Simulink block diagram
is developed that uses Level-2 M file S-functions with tuneable para-
meters. For visualization purposes, the virtual reality toolbox is used
that allowed a feedback helping the user to control his/her EEG.

Max/MSP is a widely accepted and supported software program-
ming environment optimized for flexible real-time control of music
systems. We used it to build the musical instruments that use the
recorded and processed biological signals

2.2. Data Exchange

Data are transferred from one machine to another with the UDP pro-
tocol. We chose it mainly for its better real-time capability. To com-
municate with the musical instrument we use a specific protocol one
level higher than UDP: open sound control (OSC). OSC was con-
ceived as a protocol for the real-time control of computer music syn-
thesizers over modern heterogeneous networks. Its development was
informed by shortcomings experienced with the established MIDI
standard and the difficulties in developing a more flexible protocol
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Fig. 2. Application of multiple electrodes and transducers

for effective real-time control of expressive music synthesis. Al-
though it can function in principle over any appropriate transport
layer such as WiFi, serial, USB or other data network, current im-
plementations of OSC are optimized for UDP/IP transport over Fast
Ethernet in a Local Area Network. For our project, we used OSC
to transfer data from Matlab (running on a PC with either Linux or
Windows OS) towards Max/MSP (running on a Macintosh OSX).

3. DATA ACQUISITION

Four types of signals are recorded with associated captors: EEG,
EMG, heart sounds and EOG (see Fig. 1). EMG, EOG and heart
sounds are acquired on one machine and EEG on another.

EEG data are recorded at 64 Hz on 19 channels with a DTI cap.
Data are filtered between 0.5 and 30 Hz. Channels are positioned fol-
lowing the 10-20 international system and Cz is used as reference.
The subject sit in a comfortable chair and is asked to concentrate on
different tasks. The recording is done in a normal office environ-
ment, e.g. a noisy room with people working, speaking and with
music. The environment is not free from electrical noise as there are
many computers, speakers, screen, microphones and lights around.

Disposable ECG electrodes were used for both EOG and EMG
recordings. The sounds were captured using the Biopac BSL contact
microphone. To record the EMG and heart sounds , three amplifiers
of Biopac MP100 system were used. The amplification factor for
the EMG was 5000 and the signals were filtered between 0.05-35
Hz. The microphone channel had 200 gain and DC-300 Hz band-
width. Another 2 channel amplifier, ModularEEG is used to collect
the EOG signals. This amplifier has 4000 gain and 0.4-60 Hz pass-
band.

For real time capabilities, these amplified signals are fed to the
National Instruments DAQPad 6052e analog-digital converter card
that uses the IEEE 1394 port. Thus, the data can be acquired, processed
and transferred to the musical instruments using Matlab environment
and the Data Acquisition toolbox.

4. BIOSIGNAL PROCESSING

The aim of this work is to control sound and synthesize music us-
ing parameters derived from measured biological signals. We have
tested different techniques to extract parameters giving meaningful

control data to drive musical instruments. We mainly concentrated
on the EEG (as it is the richest and most complex bio-signal) and
EMG (easy control) signals.

For EMG, the data acquisition program samples blocks of data
of 100 ms duration, and then analyzes this data. It calculates the
energy and sends this information to the related instrument.

EEG analysis focuses on the detection of a users intent. It is
based on the methods actually used in the BCI research (Fig. 3).

4.1. Detection of User’s Intent

To detect different brain states we used the spatialisation of the ac-
tivity and the different rhythms present in this activity. Indeed, each
part of the brain has a different function and every subject may
present specific rhythms at different frequencies. Three main rhythms
are of great interest:

1. Alpha rhythm: usually between 8-12 Hz, this rhythm de-
scribes the state of awareness.

2. Mu rhythm: This rhythm is also reported to range from 8
to 12 Hz. The mu rhythm corresponds to motor tasks like
moving the hands or legs, arms, etc. We use this rhythm to
distinguish left hand movements from right hand movements.

3. Beta rhythm: Comprised of energy between 18-26 Hz, the
characteristics of this rhythm are yet to be fully understood
but it is believed that it is also linked to motor tasks and higher
cognitive function.

The well-known wavelet transform [7] is a suitable time-frequency
analysis technique for the task detection. Each task can be detected
by looking at specific band on specific electrodes. This operation,
implemented with sub-band filters, provides us with a filter bank
tuned to the frequency ranges of interest. We tested our algorithm
on two subjects with different kinds of wavelets: Meyer wavelet,
9-7 filters, bi-orthogonal spline wavelet, symlet 8 and Daubechy 6
wavelets. We finally chose the symlet 8 which gave better overall
results.

At the beginning we focused on eye blink detection and α band
power detection since both are easily controllable by the musician.
We then decided to use right and left hand movements by using two
different techniques: Asymmetry ratio and spatial decomposition.

4.1.1. Eye blinking and α band

Eye blinking is detected on Fp1 and Fp2 electrodes in the 1-8Hz fre-
quency range by looking at increase of the band power. We process
the signals from electrodes O1 and O2 -occipital electrodes- to ex-
tract the power of the alpha band.

4.1.2. Asymmetry ratio

It is known that motor tasks activate the motor cortex area. Since the
brain is divided into two hemispheres that control the two sides of
the body it is possible to recognize when a person moves on the left
or right side. Let C3 and C4 be the two electrodes positioned on the
cortex, the asymmetry ratio can be written as:

ΓFB =
PC3,FB − PC4,FB

PC3,FB + PC4,FB
(1)

where PCx,FB is the power in a specified frequency band (FB), i.e.
the mu frequency band. This ratio has values between 1 and -1.
Thus it is positive when the power in the left hemisphere (right hand
movements) is higher than the one in the right hemisphere (left hand
movements) and vice-versa.
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Fig. 3. EEG processing, from recording (left) to play (right).

4.1.3. Spatial decomposition

The asymmetry ratio cannot be used to distinguish more than two
tasks. We used the Common Spatial Subspace Decomposition (CCSD)
[8] method in that case. This method is based on the decomposition
of the covariance matrix grouping two or more different tasks. Only
the simple case of two tasks is explained below. It should be noted
that this method needs a learning phase where the user executes the
two tasks.

Let X be a signal of dimension N × T for N electrodes and
T samples. Decomposing X in XA et XB , A and B being two
different tasks, we can obtain the autocovariance matrix for each
task:

RA = XAX
T
A and RB = XBX

T
B (2)

By extracting the eigenvectors and eigenvalues from R

R = RA + RB = U0λU
T
0 (3)

we can calculate the spatial factors matrix W and the whitening ma-
trix P :

W = U0λ
1/2

and P = λ
−1/2

U
T
0 (4)

If SA = PRAP
T and SB = PRBP

T then,

SA = UAΣAU
T
A SB = UBΣBU

T
B (5)

Matrices UA et UB are equal and the sum of their eigenvalues is
equal to 1, ΣA + ΣB = I . ΣA et ΣB can be written thus:

ΣA = diag[ 1...1� � � �

ma

σ1...σmc� � � �

mc

0...0� � � �

mb

] (6)

ΣB = diag[ 0...0� � � �

ma

δ1...δmc� � � �

mc

1...1� � � �

mb

] (7)

Taking the first ma eigenvector from U , we obtain Ua to compute
the spatial filters F and the spatial factors G:

Fa = WUa (8)

Ga = U
T
a P (9)

We proceed identically for the second task, taking this time the
last mb eigenvectors. Specific signal components of each task can
then be extracted easily by multiplying the signal with the corre-
sponding spatial filters and factors. For the task A it gives:

X̂a = FaGaX (10)

A support vector machine (SVM) with a radial basis function
was used as a classifier.

4.1.4. Results

The detection of eye blinking during off-line and realtime analysis
was higher than 95%, with a 0.5s time window. For hand movement
classification with spatial decomposition, we chose to use a 2s time
window. A smaller window significantly decreases the classification
accuracy. The CSSD algorithm needs more training data to achieve
a good classification rate so we decided to use 200 samples of both
right hand and left hand movements, each sample being a 2s time
window. Thus, we used an off-line session to train the algorithm.

We achieved an average of 90% good classifications during off-
line analysis, and 75% good classifications during real-time record-
ing. Real-time recording accuracy was a bit less than expected. (This
was probably due to a less-than-ideal environment - with electrical
and other noise - which is not conducive to accurate EEG signal
capture and analysis.) The asymmetry ratio gave somewhat poorer
results.

4.2. Sound Synthesis

Artificial synthesis of sound is the creation, using electronic and / or
computational means, of complex waveforms, which, when passed
through a sound reproduction system can either mimic a real mu-
sical instrument or represent the virtual projection of an imagined
musical instrument. Mapping is a significant problem in the case of
biologically controlled instruments in that it is not possible to have
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Fig. 4. Visualization of cortical activity during the live concert

an unambiguous interpretation of the meanings of biological signals
whether direct or derived.

The first instrument developed in this study was a midi instru-
ment based on additive synthesis and controlled by musician’s elec-
troencephalograms. There were two types of note trigger: First, the
cycle of notes begins when the artist opens his eyes for the first time.
The second control uses the EEG analysis: when the artist thinks
about right or left body movements, he controls the direction of cy-
cle rotation and the panning of the result. The succession of notes
is subjected of two randomized variations, the note durations and
the delta time between each note. The second instrument, driven
by electromyograms of a second bio-musician, processed accordion
samples recorded in live situation by granulation and filtering ef-
fects. Furthermore biological signals managed the spatialized dif-
fusion over eight loudspeakers of sound produced by both previous
instruments and the visual feedback. This was controlled by EEGs
of the first bio-musician.

4.3. Inverse problem and visualization

In a musical performance, first comes the music. Nevertheless, vi-
sual data has an impact on it: How the musicians play their instru-
ments, how they move and how they express their emotions. For
the EMG driven instrument, the visual impact is achieved with the
gestures of the musician, since these also are related to the sound
generated (muscle contractions). In case of the EEG driven musical
instrument, the musician must sit and stay immobile. To add a visual
effect on the performance, we decided to use a projection of the EEG
inverse problem solution. 361 current-dipoles were located on and
oriented perpendicular to the cortex. Then the current in the dipoles
was computed with the LORETA method [9]. Finally the current on
every point of an half-sphere was interpolated from the solution and
projected on a screen in the backstage(Fig.4).

5. CONCLUSION

This paper describes two musical instruments developed, that are
driven by the biological signals of the musicians. One is based on the
EEG and the other on the EMG. Although heart sounds and EOGs
are recorded, they are not inserted to the instruments yet. This is left
to further studies. One of the main achievements is the architecture
we built. It enables the communication between any recording ma-
chine that can be linked to a network and a musical instrument. Since
it is based on Matlab, any specific signal processing method can be
easily implemented in the architecture. Furthermore the bridge built

between Matlab and Max/MSP via Open Sound Control could be
easily reused by other projects. Main signal processing is done on
the EEG data although more elaborate techniques can be applied to
various other biosignals in order to enrich the acoustical content. Us-
ing the algorithms on the realtime EEG data, high accuracy in con-
trolling the synthesized musical sequence is obtained. This can be
further improved by training the musicians to get familiar with the
signals they generate. Finally, the whole concept is demonstrated to
an audience in a live concert [10].
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