
CLASSIFICATION OF AORTIC STIFFNESS FROM EIGENDECOMPOSITION OF THE
DIGITAL VOLUME PULSE WAVEFORM

Natalia Angarita-Jaimes1, Stephen R. Alty2� , Sandrine C. Millasseau3 and Philip J. Chowienczyk3

1Heriot-Watt University, Department of Mechanical Engineering, Edinburgh, U.K.
2King’s College London, Centre for Digital Signal Processing Research, WC2R 2LS, U.K.

3GKT School of Biomedical Sciences, St. Thomas’ Hospital, London SE1 7EH, U.K.

ABSTRACT

Aortic stiffness as measured by aortic pulse wave velocity
(PWV) has been shown to be an independent predictor of
Cardiovascular Disease (CVD), however, the measurement
of PWV is time consuming. Recent studies have shown that
pulse contour characteristics depend on arterial properties such
as arterial stiffness. This paper presents a method for estimat-
ing PWV from the digital volume pulse (DVP), a waveform
that can be rapidly and simply acquired by measuring trans-
mission of infra-red light through the finger pulp. PWV and
DVP were measured on 461 subjects attending a cardiovascu-
lar prevention clinic at St Thomas’ Hospital, London. Using a
non-linear Kernel based Support Vector Machine (SVM) clas-
sifier, it is possible to achieve results of up to 88% sensitivity
and 82% specificity on unseen data. Further, we show that
this approach outperforms traditional Artificial Neural Net-
work (ANN) methods. This technique could be employed by
health professionals to rapidly diagnose patients’ cardiovas-
cular fitness in general practice clinics.

1. INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mor-
tality in the developed world. An estimated 17 million peo-
ple die of CVDs every year, in particular heart attacks and
strokes (according to the World Health Organization). Fac-
tors such as advancing age, heredity or family history, gender
and ethnicity are independent causes for cardiovascular dis-
ease that science can do little about. However extensive clin-
ical and statistical studies have identified that a substantial
number of these deaths (at least one third) can be attributed
to preventable major risk factors such as tobacco use, high
blood pressure, high cholesterol, diabetes and obesity. Phys-
ical inactivity and unhealthy diet are other main contributory
factors which increase individual’s risk to CVDs. Despite the
knowledge of all these factors, many of the deaths and most
of the heart attacks are the result of under-diagnosis and/or
under-treatment.

Currently, several methods exist to evaluate CVD risk.
One of the most well-known and still widely used is the Fram-
ingham risk calculator [1]. The Framingham Heart Study

�Please address all correspondence to steve.alty@kcl.ac.uk

based on a white population from North America has been
operational since the 1950s and includes a cohort of 5573 pa-
tients. The study found a quantitative relationship between
multiple risk factors through a parametric model that signifi-
cantly predicted the occurrence of several cardiovascular dis-
eases. However, because this model (and others) rely mainly
on the measure of these factors (which are time consuming
and in some cases invasive) they are impractical for casual
screening. Therefore, an assessment of total (global) risk
based on the summation of all major risk factors would be
clinically useful, hence the development of an appropriate and
simple method for the evaluation of individual risk of CVD,
based on a single measure, needs to be established. In recent
studies aimed at achieving this goal, it has been shown that
an increase of the stiffness in large arteries is strongly asso-
ciated with increased CVD risk. A number of indirect and
direct measures of large artery stiffness have been proposed
and among these various indices, a recognized and reliable
method is Pulse Wave Velocity (PWV). PWV is the measure-
ment of the average speed of propagation of the arterial pulse
wave in the aorta (the main artery taking blood from the heart
to the rest of the body). Ageing, accompanied by an increase
in arterial stiffness, leads to an increase in aortic PWV and re-
sults [2] have indicated that this measurement taken alone ap-
peared as a strong predictor of cardiovascular mortality with
high performance values as assessed by the standard Fram-
ingham equations. In a further study [3] on a French popula-
tion of predominantly hypertensive patients, arterial stiffness
measured through PWV predicted the occurrence of CVD
more accurately than those provided by classical risk factors
assessed through the Framingham or multivariate Cox mod-
els [4].

Traditionally, the carotid-femoral pressure pulse has been
used to evaluate aortic stiffness because the pressure wave
(PWV) can be more easily recorded at these two sites and its
distance is great enough to allow an accurate calculation of
the time interval between the two waves. From this measure-
ment of the PWV, an index has been defined to characterize
the shape of the arterial pulse that is known to change with age
and certain pathologies. This index, called the Augmentation
Index (AIx) measures the interaction of the forward pressure
wave with the reflected wave from the distal circulation. Such
interaction is measured as the increase in the peak pressure
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Fig. 1. DVP recorded by measuring the transmission of IR light
through the finger pulp.

and is used as a surrogate measure of arterial stiffness. In ad-
dition to the changes related to age, the AIx varies with the
presence of cardiovascular disease and has been shown [5]
to be related to classical risk factors; especially the pressure
pulse measured at the top of the aorta seems to correlate well.
Two major drawbacks of this technique, however, are the ex-
pensive equipment needed and the high level of technical ex-
pertise required for obtaining an adequate waveform for anal-
ysis. The technique used to measure the carotid-to-femoral
PWV is applanation tonometry which gives a direct measure-
ment of aortic PWV but this is costly. For this reason, and in
order to generalize the evaluation of arterial stiffness among
primary care physicians, (to make it suitable for use in large
clinical studies), a technique that requires no specialized tech-
nical skill would be most desirable.

1.1. Digital Volume Pulse Approach

A promising alternative is the volume pulse waveform mea-
sured at the finger tip, the so-called Digital Volume Pulse
(DVP). The DVP can be rapidly and simply obtained by mea-
suring infrared light absorption of arterial blood in the fin-
ger pulp (technically referred to as photoplethysmography).
The pioneering work of Takazawa et al [6] has shown that the
contour of DVP is similar to that of a carotid pressure pulse.
Unlike tonometry (used to estimate PWV), photoplethysmog-
raphy is inexpensive and operator independent (see Fig. 1).
Furthermore, Millasseau et al [7, 8] have substantially docu-
mented that the pressure pulse and the DVP contain the same
information and that both are determined by a direct wave
and a reflected wave. For these reasons using features ex-
tracted from the DVP waveform to estimate arterial stiffness
and hence cardiovascular disease risk is very attractive.

Signal subspace analysis is performed on the DVP wave-
form data to extract suitable features for classification. Sup-
port Vector Machine (SVM) [9, 10] supervised learning tech-
nique (introduced in section 3) was then applied to find the
best set of features to give good prediction of high and low
PWV. These features were also tested using the more tradi-
tional Artifical Neural Network (ANN) approach to provide a
benchmark for comparison with the SVM method.

2. FEATURE EXTRACTION

Previous work in this field [11] was based on features ex-
tracted from the DVP waveform which were, however, physi-
ologically motivated. That is to say, they were based on indi-
cators that were related to the physical properties of the aorta
and arteries in general. These included the peak-to-peak time
of the waveform (generally having two peaks) as this is af-
fected by the stiffness of the blood vessels, also the crest-
time of the first peak and the relative amplitudes of the two
peaks. In this paper, by contrast, we make no assumptions
about the physical nature of the waveform and rely instead
on signal processing and decomposition. Exhaustive tests
were made on a number of different methods of extracting
suitable features from the DVP waveform (and these are pre-
sented here [12]). They included Kernel Principal Component
Analysis (PCA) [13], Wavelet Packet (WP) decomposition
and signal subspace analysis. Ultimately, it was found that
a certain range of the eigenvalues of the covariance matrix
(formed by the autocorrelation of the DVP waveform with its
mean removed) outperformed all the other features and meth-
ods by some margin. Briefly, the covariance matrix A =
x̃x̃T = UΣVT can be decomposed using Singular Value
Decomposition (SVD) into its eigenvectors, U and V and
eigenvalues, Σ where x̃ is the DVP amplitude with its mean
removed. Specifically, the range of eigenvalues σ3, · · · , σ9

inclusive were found empirically to give the best results. Fur-
thermore, this study is based on a much larger data set (by
three times) and therefore implies a much greater statistical
significance.

3. SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) [9] have received a great
deal of attention recently proving themselves to be very effec-
tive in a variety of pattern classification tasks. They have been
applied to a number of problems ranging from hand-written
character recognition, bioinformatics to automatic speech recog-
nition (amongst many others) with a great deal of success.
A brief summary of the mathematical theory of SVMs fol-
lows, for a complete treatment please see [10]. Consider a bi-
nary classification task with a set of linearly separable training
samples

S =
{

(x1, y1) · · · (xm, ym)
}

, (1)

where x ∈ R
d, i.e., x lies in a d-dimensional input space,

and yi is the class label such that yi ∈ {−1, 1}. The label
indicates the class to which the data belongs. A suitable dis-
criminating function could then be defined as:

f(x) = sgn(〈w,x〉 + b) . (2)

Where vector w determines the orientation of a discriminant
plane (or hyperplane), 〈w,x〉 is the inner product of the vec-
tors, w and x and b is the bias or offset. Clearly, there are an
infinite number of possible planes that could correctly classify
the training data. Intuitively one would expect the choice of
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a line drawn through the “middle”, between the two classes,
to be a reasonable choice. This is because small perturbations
of each data point would then not affect the resulting classifi-
cation. This therefore implies that a good separating plane is
one that is more general, in that it is also more likely to accu-
rately classify a new set of, as yet unseen, test data. It is thus
the object of an optimal classifier to find the best generalis-
ing hyperplane that is equidistant or furthest from each set of
points. The set of input vectors is said to be optimally sepa-
rated by the hyperplane if they are separated without error and
the distance between the closest vector and the hyperplane is
maximal. This approach leads to the determination of just one
hyperplane.

3.1. Soft-Margin Classifier

Typically, real-world data sets are in fact linearly inseparable
in input space, this means that the maximum margin classifier
approach is no longer valid and a new model must be intro-
duced. This means that the constraints need to be relaxed
somewhat to allow for the minimum amount of misclassi-
fication. Therefore the points that subsequently fall on the
wrong side of the margin are considered to be errors. They
are, as such, apportioned a lower influence (according to a
preset slack variable) on the location of the hyperplane. In
order to optimise the soft-margin classifier, we must try to
maximise the margin whilst allowing the margin constraints
to be violated according to the preset slack variable ξi. This
leads to the minimisation of: 1

2‖w‖2 + C
∑m

i=1 ξi subject to
yi(〈w,xi〉 + b) ≥ 1 − ξi and ξi ≥ 0 for i = 1, . . . , m. The
minimisation of linear inequalities is typically solved by the
application of Lagrangian duality theory [10]. Hence, form-
ing the primal Lagrangian,

L(w, b, ξ, α, β) =
1
2
‖w‖2 + C

m∑
i=1

ξi −
m∑

i=1

βiξi −
m∑

i=1

αi [yi(〈w,xi〉 + b) − 1 + ξi] , (3)

where αi and βi are independent Lagrangian multipliers. The
dual-form can be found by setting each of the derivatives of
the primal to zero thus, w =

∑m
i=1 yiαixi and

∑m
i=1 yiαi =

0, then re-substituting into the primal thus,

L(w, b, ξ, α, β) =
m∑

i=1

αi − 1
2

m∑
i=1

yiyjαiαj〈xi,xj〉 . (4)

Interestingly, this is the same result as for the maximum mar-
gin classifier. The only difference is the constraint α+β = C,
where α and β ≥ 0, hence 0 ≤ α ≤ C. This implies that
the value C, sets an upper limit on the Lagrangian optimi-
sation variables αi, this is sometimes referred to as the box
constraint. The value of C offers a trade-off between accu-
racy of data fit and regularisation, the optimum choice of C
will depend on the underlying nature of the data and is usu-
ally determined by cross-validation (whereby the classifier is
tested on a section of unseen data). These equations can be

solved mathematically using Quadratic Programming (QP)
algorithms. There are many online resources of such algo-
rithms available for download, see website referred to in [10]
for an up to date listing.

3.2. Kernel Functions

It is quite often the case with real-world data that not only is it
linearly non-separable but it also exhibits an underlying non-
linear characteristic nature. Kernel mappings offer an effi-
cient solution by non-linearly projecting the data into a higher
dimensional feature space to allow the successful separation
of such cases. The key to the success of Kernel functions is
that special types of mapping, that obey Mercer’s Theorem,
offer an implicit mapping into feature space. This means that
the explicit mapping need not be known or calculated, rather
the inner-product itself is sufficient to provide the mapping.
This reduces the computational burden dramatically and in
combination with SVM’s inherent generality largely mitigates
the so-called “curse of dimensionality”. Further, this means
that the input feature inner-product can simply be substituted
with the appropriate Kernel function to obtain the mapping
whilst having no effect on the Lagrangian optimisation the-
ory. Hence, the relevant classifier function then becomes:

f(x) = sgn

[
nSV s∑
i=1

yiαiK(xi,x) + b

]
(5)

where nSV s denotes the number of support vectors, yi are
the labels, αi are the Lagrangian multipliers, b the bias, xi

the Support Vectors previously identified through the training
process, and x the test data vector. The use of Kernel func-
tions transforms a simple linear classifier into a powerful and
general non-linear classifier. There are a number of different
Kernel functions available [10], however, one of the most con-
sistently useful is the Gaussian Radial Basis Function (RBF)
Kernel, given by

K(xi,x) = exp(−‖xi − x‖2/2σ2) . (6)

It was found that using this Kernel gave the best performance
for the classifier.

4. RESULTS

Here a binary classifier based upon the OSU SVM toolbox
for MATLAB� [14] was employed, using a Gaussian RBF
Kernel, in combination with a soft margin classifier. After
much experimentation a constraint factor of C = 1000 and
Gaussian RBF Kernel with σ = 1.2 was found to be optimum
and used to train and test the classifier to obtain the results
below. A cohort of 461 subjects recruited from a south-east
London hypertension clinic, with complete DVP waveform
data and PWV measurements were used in this study. The
PWV values were grouped into low and high values. Stud-
ies [15] have shown that values of < 9ms−1 are low risk and
values > 11ms−1 indicate a high CVD risk category. More-
over, the mean PWV value of our cohort was found to be
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SVM Classifier ANN Classifier
High Low High Low

Target High 88% 12% 79% 21%
Target Low 18% 82% 24% 76%

Table 1. SVM vs. ANN classification of PWV

around 10ms−1, hence, a binary target label was determined
according to this threshold. The cohort was gapped to re-
move those subjects with PWV of between 9 and 11ms−1 to
avoid ambiguity of classification. The remaining 315 records
underwent multi-folded cross-validation whereby 90% were
used for training and 10% for testing in any given fold. As
shown in Table 1, the SVM method yields a high degree of
classification accuracy, with a significantly high proportion,
88%, of true positives achieved (i.e. the sensitivity). There
was a slightly lower result of only 82% true negatives (i.e. the
specificity). However, this is of less importance as clinicians
are more concerned by false negatives, (patients who were
incorrectly classified as having a low CVD risk), of which
there were only 12%. Hence, the overall average becomes
85% successful classification. By comparison the ANN ap-
proach achieved at best only 79% sensitivity, 76% specificity
and 78% overall. Hence the SVM method outperformed the
ANN method by quite some margin. Moreover, the use of
eigenvalue features improved the robustness and reliability of
the classifier significantly over that presented in our previous
work [11].

5. CONCLUSIONS

A method to accurately classify patients into high and low
PWV (equivalent to high and low CVD risk) using features
extracted from their DVP waveform is presented. Support
Vector Machine classification is shown to provide superior re-
sults when compared with the popular Artificial Neural Net-
work approach. Measuring DVP is very simple and rapid,
hence this method offers the very exciting property of being
suitable for use by health professionals, such as GPs, as a
casual screening facility for the prevention of CVD related
injury and mortality for minimal cost to hospitals and health
authorities.

6. FUTURE WORK

Future work is currently under way to investigate new fea-
ture extraction methods motivated by new signal processing
techniques to further improve the classification results. The
statistical significance of this study grows as we continue to
gather new data on subjects from different geographical, eth-
nical and pathological backgrounds.
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