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ABSTRACT

The endoscopic capsule is a recent medical technology with 

important clinical benefits but suffering from a practical 

handicap: long exam annotation times. This paper shows 

how support vector machines can be used to segment the 

gastrointestinal tract into its four major topographic areas, 

allowing the automatic estimation of the clinically relevant 

gastric and intestinal transit times. According to medical 

specialists, this can reduce exam annotation times by up to 

12%.

1. INTRODUCTION 

The endoscopic capsule is the first autonomous micro-

device to explore the human inner body of wide clinical 

application. This 11 by 30 mm device developed by 

researchers in Israel and the UK, includes a camera, a light 

source, RF transmitter and batteries. It is ingested by the 

patient and films the whole gastrointestinal tract during 6-8 

hours, reaching places where conventional endoscopy is not 

capable of. The full system consists of the capsule itself, an 

external receiving antenna and a portable hard drive carried 

in the patient’s belt. According to its distributor (Given 

Imaging, Israel), “over 230,000 patients worldwide have 

experienced the advantages of painless and effective 

PillCam™ Capsule Endoscopy” [1]. Articles in renowned 

scientific journals have shown the clinical importance of 

wireless capsule endoscopy, namely Iddan [2], Qureshi [3] 

and Ravens [4]. 

Currently, one of the main setbacks of this new 

technology is the long duration of the exam analysis task. A 

specialized doctor needs to view around 60,000 images such 

as the ones in Figure 1, looking for both abnormal situations 

(events) such as blood or ulcers, and defined topographic 

marks of the gastrointestinal tract (e.g. pylorum, ileo-cecal 

valve). This process, when performed by a trained 

specialist, can take about 2 hours. Ravens [4] comments that 

“the time a doctor needs to analyze the exam may be the 

most costly part of the procedure”. There is a pressing need 

for automatic tools that can reduce these long annotation 

times. Even small time savings can be vital when multiplied 

by the 230,000 exams that, according to Given Imaging [1], 

have been performed worldwide. 

Figure 1 – Examples of endoscopic capsule images 

The main contribution of this paper is the presentation of 

the first automatic tool that performs the topographic 

segmentation of the gastrointestinal tract for endoscopic 

capsule exams. According to doctors of Santo António 

General Hospital (www.hgsa.pt) in Portugal, responsible for 

over 100 capsule exams per year, this task takes 

approximately 15 minutes to complete by a specialist and 

allows the estimation of the clinically relevant gastric and 

intestinal transit times [5]. 

The automatic segmentation method presented is based 

on four support vector machine classifiers using MPEG-7 

visual descriptors as feature vectors. Results are fitted to a 

four-section model obtaining the locations of the esogastric 

junction, pylorum and ileo-cecal valve. Methods are 

detailed in Section 2 and results presented in Section 3. 

Observations and conclusions are drawn in Section 4. 

2. METHODS 

Training

Stage

Single Image
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Figure 2 – Topographic segmentation system.

Our proposed topographic segmentation system can be seen 

as a three stage solution. As shown in Figure 2, we have a 

training stage where support vector machine models are 
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obtained, a classification stage where each image is labeled 

as belonging to one of four topographic zones, and a final 

stage where results are fitted to a four section model 

representing the gastrointestinal tract. 

Previous work by the authors has shown that it is 

possible to segment the gastrointestinal tract using simple 

classifiers based on Euclidean and Mahalanobis distances 

[6]. This paper improves such results by using a soft 

computing approach called support vector machines (SVM).

These formulate the learning problem as a quadratic 

optimization one whose error surface is free of local minima 

and has a global optimum. SVM approaches consist in first 

transforming the input data into a higher dimensional space 

using a kernel function, and then estimating an optimal 

hyperplane between the two classes that maximizes the 

margin of separation between them. For a detailed 

description of this method we refer to Burges’ excellent 

tutorial [7]. The following SVM kernel functions K(x,y)

were tested: linear (Lin - Equation 1), polynomial (Poly - 

Equation 2: p-polynomial degree), radial-base functions 

(Rbf - Equation 3: σ   - Gaussian width) and sigmoid (Sig - 

Equation 4: k,δ  - scale constants):
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To reduce development time, we’ve decided to use MPEG-7 

visual descriptors as our low-level features. These constitute 

a set of well known and studied features with available free 

source code that we could use. We were especially 

interested in color and texture features (please see 

Manjunath [8] for definitions), and used the reference 

software freely available at the website of the Institute for 

Integrated Systems of TU Munich. (www.lis.ei.tum.de/ 

research/bv/topics/mmdb/e_mpeg7.html). Instead of testing 

all descriptors, we’ve selected the most useful ones using 

previous relevance studies [9]. Following this, two are used 

for the experiments in this paper: Scalable Color (SC) and 

Homogenous Texture (HT). They not only obtained best 

results but have a complementary nature evaluating both 

color and texture. Three-fold cross validation was used in 

all experiments: data was divided into three sets where two 

were used for training and one for testing. Average results 

for all permutations were then obtained.  

Figure 3 – Four-stage model for topographic segmentation. 

The problem of topographic segmentation requires the 

estimation of three parameters: z12, z23 and z34, as shown in 

Figure 3. Before this is accomplished, we need to train four 

SVM classifiers: one for each topographic zone. Sets of 

30,000 images per zone were randomly selected out of 60 

different annotated exams. These positive and negative 

examples were used to train each classifier to estimate if an 

image belongs to a single topographic zone or not. Single 

image classification (Figure 2) consists in assigning a 

topographic location TC to each image as belonging to one 

of the four zones. This is accomplished by selecting the 

SVM classifier with the largest positive distance to its 

corresponding hyperplane. For performance analysis of this 

stage we’ve used typical accuracy and recall measures: 

detectionsautomaticTotal

detectionsCorrect
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sannotationmanualTotal

detectionsCorrect
Recall = (6)

Assuming our three topographic parameters zx,y are 

estimated and that our individual topographic classification 

TC of image t has been obtained, we can define the single 

image classification error E for each image t as: 
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This means we can define the total error TE of our 

parameter estimation as a linear combination of these 

individual errors for N images: 
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Iteration is used to minimize TE by consecutively varying 

one segmentation parameter in each cycle. These are 

initialized using the mean values of the corresponding 

training sub-set. Cross-validation is used to avoid over-

fitting of results. Numerical quantification of the quality of 

the estimation is accomplished by measuring the 

segmentation error SEz for each parameter as the difference 

between an estimated parameter z and the manually 

annotated ground truth z’. Our total segmentation error SE 

is equal to the sum of the three individual errors.
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3. RESULTS 

All results have been obtained on a Pentium 3,2GHz with 

1GB RAM. The well-known SVM-light software package 

(http://www.cs.cornell.edu/People/tj/svm_light/) was used 

for SVM training. Segmentation results were obtained by a 

SVM-light module integrated into the CapView annotation 

software (www.capview.org), developed within our group. 

Each image has 256x256 resolution with 24 bits of color 

data per pixel and a full exam averages 60,000 images. 

Figure 4 illustrates some results for the single image 

classification stage. Scalable Color clearly outperforms 
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Homogenous Texture, with best results obtained by SC 

using a polynomial kernel. Better results can be obtained by 

combining descriptors, reaching a maximum accuracy of 

86% when using Gaussian kernels. Although higher 

accuracies are still desirable, one should notice that the 

‘low-pass’ filter effect of the global model fitting stage 

rejects most of these outliers. 
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Accuracy Recall

Figure 4 – Individual classification performance using 

various descriptors (SC-Scalable Color; HT-Homogenous

Texture) and kernel functions (Equations 1-4).

We can now observe the behavior of these classifiers near 

zone boundaries and understand why the final segmentation 

obtains reasonably small errors. Figure 5 shows an example 

of a correct segmentation: blue represents the distance of 

each image to the Zone 1 SC Poly SVM hyperplane, and 

green the distance to Zone 2. The solid black line shows the 

manually annotated transition (esogastric junction). 

Although these distances have strong fluctuations, they 

usually produce good classifications (negative distances 

mean negative classification results) and there is a clear 

transition near the annotated boundary. As results will 

show, a model fitting stage such as the one described in 

Section 2 produces an accurate topographic segmentation. 

Another example of a topographic segmentation can be 

seen in Figure 6. Careful observation shows a slight 

difference between the manually annotated position of the 

pylorum and the results from our automatic system. This 

reflects a small instability of the manual annotation itself: 

doctors tend to annotate the pylorum (and other topographic 

marks) when they see them. The automatic system is trained 

to detect variations in image characteristics (e.g. color, 

texture) so it annotates the moment that the capsule actually 

crosses the valve. Sometimes this difference is quite large 

since the capsule tends to ‘bounce’ several times on such 

valves before crossing them. This is especially serious in the 

ileo-cecal valve where the capsule can stay for more than 30 

minutes. We are currently conducting clinical studies in 

cooperation with several hospitals and private clinics to 

measure these ‘bouncing’ times and the subsequent 

instability of the manual annotation. 
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Figure 5 – Example of the behavior of Zone 1 and Zone 2 

SC Poly classifiers near the esogastric junction. 
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Figure 6 – Example of the behavior of Zone 2 and Zone 3 

SC Poly classifiers near the pylorum. 

Median Error (images) 

E(12) E(23) E(34) Total 

SC Lin 6.0 326.3 2689.3 3021.7 

SC Poly 2.8 211.8 1070.7 1285.3 

SC Rbf 9.2 704.3 1902.0 2615.5 

SC Sig 8.0 205.0 1916.0 2129.0 

HT Lin 47.7 5396.5 10322.0 15766.2 

HT Poly 1212.3 23076.2 9676.0 33964.5 

HT Rbf 15.5 647.0 1815.3 2477.8 

SC+HT Lin 2379.0 1386.2 2046.8 5812.0 

SC+HT Poly 11.0 10006.8 7913.7 17931.5 

SC+HT Rbf 11.5 295.8 1322.8 1630.2 

Table 1 – Median errors of the topographic segmentation. 

For numerical assessment of the quality of the topographic 

segmentation we’ve used median SEz and SE errors 

(Equations 9-10) instead of the more obvious mean error. 

The reason for this choice is that segmentation outliers tend 

to be rather drastic, placing all junctions at the beginning or 

end of the exam and thus generating very large mean errors. 

Since a single drastic error (which is easily detected 
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anyway) might mask all the smaller segmentation errors, 

we’ve found the median error to be much more informative 

for evaluating and therefore improving our system. Table 1 

and Figure 7 summarize results for all descriptors and 

kernels. 
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Figure 7 – Total median segmentation errors for various 

descriptors and kernel functions. 

Following the results of the single image classification 

stage, best results are obtained by the SC Poly and SC+HT 

Rbf classifiers. Although the latter exhibits slightly better 

individual classification accuracy, it proves slightly worse in 

detecting the location of the ileo-cecal valve (E34 value in 

Table 1) and thus a slightly higher total median error. This 

directly affects transit time estimation where SC Poly is 

clearly the best classifier obtaining relative errors of 8% and 

6% for gastric and intestinal transit times as seen in Table 2. 

Zone 2 Zone 3 Transit Time 

Median Error Total (m) Relative Total (m) Relative 

SC Lin 2.0 11.8 % 34.5 12.6 % 

SC Poly 1.4 8.0 % 14.6 5.9 % 

SC Rbf 3.4 15.2 % 27.2 10.9 % 

SC Sig 2.9 14.6 % 28.8 11.4 % 

HT Lin 38.3 100.0 % 168.6 68.5 % 

HT Poly 217.1 479.6 % 206.9 100.0 % 

HT Rbf 5.4 21.7 % 33.8  12.6 % 

SC+HT Lin 10.6 75.0 % 24.0 11.6 % 

SC+HT Poly 18.2 86.5 % 137.4 56.1% 

SC+HT Rbf 3.3 12.4 % 22.3 9.2 % 

Table 2 – Gastric and intestinal transit time errors. 

4. DISCUSSION 

A full topographic segmentation system for endoscopic 

capsule exams has been presented. This is accomplished 

using support vector machine classifiers that label each 

image as belonging to one of four zones, followed by a 

global model fitting stage that estimates zone transitions by 

minimizing an error function. Best results were obtained 

using the MPEG-7 Scalable Color descriptor as the feature 

vector of SVM classifiers with polynomial kernels. A total 

median error of 1285 images (out of 60,000) was obtained 

generating relative errors smaller than 10% for transit time 

estimation. 

Future work will expand this methodology to detect 

abnormal events in capsule endoscopy exams, thus reducing 

annotation times even further. 
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