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ABSTRACT 

Modeling the muscle activity patterns in coordinated reaching 
movements from surface Electromyogram (sEMG) recordings is 
a key challenge in motor behavior studies. Based on Bayesian 
Network (BN) modeling of sEMG data, this paper presents a 
framework for discovering and modeling muscle networks and 
identifying functional muscle groupings. The learned network is 
further explored for the purpose of classification. We 
demonstrate the proposed approach on reaching movements in 
stroke. We found that the specific muscle triples <anterior 
deltoid, biceps-brachium and lateral deltoid>, <biceps-
brachium, triceps lateral and lateral deltoid> and <triceps long 
head, triceps lateral and lateral deltoid>, are selectively recruited 
during reaching movements and are differentially recruited after 
stroke. We call these computed muscle triplets “directed 
synergies” to contrast with synergies that are defined by 
traditional covariance methods. A BN trained on a single 
healthy subject completely classified and detected the affected 
side in all stroke subjects. The proposed approach appears a 
promising technique for muscle network and synergy analysis in 
motor control. 

1. INTRODUCTION 

An important goal of motor control is to understand how the 
central nervous system (CNS) co-ordinates the muscle activity 
patterns necessary to achieve a variety of natural motor 
behaviors [1]. To address this central goal, a key question to 
answer is how different muscles efficiently collaborate together 
for coordinated reaching movements. The concept of muscle 
“synergies”, the coherent activations of a group of muscles, has 
been proposed in the literature as possible building blocks to 
analyze motor pattern behaviors (e.g. in frogs) [1]. However, 
identifying muscle synergies from all possible muscle patterns 
and the efficient decomposition of complex and variable motor 
behaviors into meaningful synergies remain challenging 
problems. So far, a muscle synergy is simply represented as the 
co-varying activation of different muscles and the reconstruction 
is based on simple linear combination of covariance-based 
synergies. These current approaches may not sufficiently 
represent the complexity and variability of muscle dynamics in 
higher animals such as humans. 

In this paper, to better represent the complex collaborating 
relationships among muscles during reaching movements, we 
generalize the muscle synergy idea into the concept of a muscle 
network, defined as a set of muscles and directed interactions 
between them that are coordinated to achieve specific motor 
behaviors. From the overall muscle network meaningful 

functional muscle synergies (i.e. sub-networks or network-motif 
[2] representing interactions between specific muscles, referred 
as “directed synergies” in this study) can be revealed.  

The surface Electromyogram (sEMG) signal, a semi-
stochastic complex signal depending on anatomical and 
physiological properties of the contracting muscle, is recorded 
on the skin by the means of appropriate non-invasive electrodes 
[3]. As the sEMG signal can be obtained non-invasively, and it 
directly reflects the underlying muscle contraction, it has been 
widely applied in motor control studies. In this study, sEMG 
signals from several muscles were recorded simultaneously 
during reaching movements in both healthy and stroke subjects. 
The overarching goal is the identification of a common 
formalism able to model the sEMG data. 

By employing similar techniques developed for network 
analysis in other areas, a wide variety of modeling formalisms 
can be used for inferring muscle networks from sEMG data [4], 
such as Boolean networks and Bayesian networks (BN) [5].  We 
are particularly interested in Bayesian networks (also known as 
directed graphical models) due to its popularity and success in 
many areas [6]. BN is a knowledge representation formalism at 
the cutting edge of knowledge discovery and data mining that 
can combine information and make probabilistic inferences. A 
BN represents the statistical structure of a data set through a 
graph of vertices (or nodes) and arcs (or edges) connected by 
rigorous statistical rules (see section 2). 

 Use of BN for modeling muscle networks is attractive 
because its modular nature makes it easily extensible to the task 
of modeling sEMG data and its solid basis in statistics enables it 
to deal with the stochastic and nonlinear aspects of sEMG 
measurements in a natural way. Moreover, Bayesian networks 
can be used when incomplete knowledge about the system is 
available, and further it can deal with dynamical aspects of 
muscles through generalizations like dynamic Bayesian 
networks.  

The main contributions of this paper are as follows: 
• To present a framework for learning the muscle networks 

during reaching movements based on the BN modeling of 
sEMG data. 

• To conduct the pattern analysis and comparison of 
“directed synergies” between healthy and stroke subjects 
during reaching movements, and to identify specific three-
vertex muscle directed synergies which provide insights 
into the underlying deficits seen in stroke.    

• To explore a supervised classification approach to represent 
muscle profiles that characterize stroke, by extending the 
simple Bayesian network.  
The paper is organized as follows. In Section 2, we 

describe the proposed BN framework for learning muscle 
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networks and analyzing the patterns of the functional muscle 
directed synergies. A real case study utilizing sEMG recordings 
from stroke and healthy subjects is described in Section 3. 
Finally, we conclude our paper and suggest some directions for 
future research. 

2. METHOD 

2.1. The framework
The EMG signals of muscles in a movement are modeled as a 
vector-valued stochastic process X(t)=[X1(t), X2(t)… Xn(t)]

T

where Xi(t) is the signal of the ith muscle and n is the number of 
the muscles. A BN is applied to model X(t), to represent the 
cooperation pattern of the muscles. Different types of BNs may 
be applied, depending on researchers’ interest and prior 
knowledge. For example, a BN may be static or dynamic.  

Features of the BN can be extracted to characterize the 
network. Widely known features include the number of arcs in 
or out from vertexes, or the path length from one vertex to 
another. To go beyond the vertex and the arc levels, we can use 
as the feature the “network motifs” [2] which are the connect-
ion patterns recurring frequently in the sub-networks of the 
whole network. Due to our specific interest in muscle synergies 
at the sub-network level, the network motifs are a suitable 
choice. 

In addition, the BN model built from supervised learning 
can be extended to classify different cooperation patterns of 
muscles. 

Therefore, the proposed framework includes three main 
components: Bayesian network learning, sub-network pattern 
analysis, and the BN-based classification. We will discuss these 
components in detail as follows.

2.2. Brief introduction of Bayesian networks  
As shown in Figure 1, a BN consists of a graph, conditional 
probability distributions for the random variables, the joint 
probability distribution, and conditional independencies. It is a 
directed acyclic graph (DAG) of vertices representing random 
variables and arcs representing dependence relations among the 
variables. If a vertex Ai has incoming arcs from vertices (A1, 
A2…Am), it depends on (A1, A2…Am). (A1, A2…Am) are called the 
parents of Ai and are denoted as pa (Ai). Ai is associated with a 
conditional probability distribution P(Ai| pa (Ai)). If a vertex Ai

has no parents, it is associated with an unconditional probability 
distribution P(Ai). A BN can represent the joint distribution of 
all the random variables (A1, A2 … An) as  

∏∏ =≠
=

φφ )(pa)(pa1 )()](pa|[)...(
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2.3. Training Bayesian networks 
For simplicity, we consider static BNs, assuming that the 
muscles cooperate in a same pattern through the whole 
movement and that the signals at different time points are 
mutually independent. This assumption probably oversimplifies 
the truth, but it could provide a sufficient profile of muscle 
interactions during reaching movements. Therefore, based on 
the assumption, we use the signals at times t1, t2…tk as k i.i.d 
samples, i.e. X(ti)~X=[X1, X2…Xn], to  learn a static BN of X1, 
X2…Xn. Furthermore, we assume that X is a Gaussian random 
variable, though it can be extended to more general distribution 
models. 

Training a BN includes two steps: learning the structure of 
the DAG and estimating the parameters of the conditional 
distributions. Several algorithms, for instance, hill climbing 
(HC), Kutato2 (K2)[7], Inductive Causation (IC)[8], Markov 
Chain Monte Carlo (MCMC) have been developed to learn the 
structure. To avoid local minimums found by greedy algorithms 
(such as HC and K2) and to avoid time-consuming exhaustive 
search, we use MCMC to learn the structure, with Bayesian 
Information Criterion (BIC) as the score function which is 
defined as Equation (1), where D is the observed data, N is the 
size of D, M is the statistical model and dim(M) is the number of 
free parameters in the model.  

NMMDPDMBIC log)dim(5.0)|(log)|( −=   (1) 

   Based on the learned structure of the BN, the parameters of 
the conditional distributions are estimated via the Maximum 
Likelihood criterion. In this study, we use the software Bayes 
Net Toolbox (BNT) [9] for Matlab in our analysis.  

2.4. Patterns of sub-networks 
Milo and Shen-Orr [2] reported that a few connection patterns 
are dominant in the networks in the real world, and that different 
types of networks are distinguished by different dominant 
connection patterns. Thus, they proposed using the dominant 
connection patterns (called network motif) to characterize 
complex networks. Since the dominant connection pattern may 
be functional, we adopt a similar idea to discover the functional 
muscle synergies from BNs. 

Given a DAG, we can scan all of its m-vertex sub-networks, 
and record the number of the occurrences of each connection 
pattern. Since several different DAGs may determine the same 
statistical model, before we scan the patterns, the DAG of a 
learned sub-network is converted to the essential graph (EG) 
[10] which uniquely determines the statistical model and which 

Figure 1. An example of Bayesian network. Vertexes A1 and 
A2 have no parents and they are associated with unconditional 
probability distributions. Vertexes A3 and A4 have parents and 
they are associated with conditional probability distributions. 

Figure 2. Connection patterns of 3-vertex essential graphs 
(EG). Sub-figure A ignores the order of the vertexes and sub-
figure B considers the order [10].
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may have undirected arcs. In the present study, we studied 
connection patterns of triples (m=3) whose possible patterns are 
shown in Figure 2A [10]. The count of the connection patterns 
provides an insight to the EG features. 

While the general network motif patterns give information 
in the overall connectivity of the network, we are also interested 
in sub-networks between specific muscles, because these 
specific muscles may cooperate in similar synergies during 
different movement tasks. Thus, Figure 2B also shows all the 
possible connection patterns of 3-vertex EG however the index 
and order of the vertexes are now considered [10]. For a given 
subject, several EGs may represent different movement 
behaviors and therefore we can count the dominant interaction 
patterns between specific muscles. The significantly recurring 
patterns may represent the functional muscle synergies. 

2.5. Classification 
We now describe an extension of Bayesian networks to 
classification, as one goal of our studies in sEMG data is the 
discovery of a muscle behavior profile for stroke diagnosis or 
prognosis.  

Our intuition is that different subjects use their non-paretic 
sides similarly while their paretic sides are diseased in different 
ways. Thus, the BNs associated with the non-paretic sides are 
expected to be similar across subjects. Suppose that the common 
joint statistical model of the non-paretic side is M0 and that D is 
the coming data of an unknown side, and then the likelihood 
P(D|M0) represents how much the data D fit the model and thus 
can be used as a decision value to classify the data. The larger 
P(D|M0) is, the more likely D belongs to the non-paretic side. 
Due to the dimension issue, to make a fair comparison, we used 
the mean log likelihood (MLL) log(P(D|M0))/N, with N being 
the sample size of D, as the criteria for classification. 

3. RESULTS AND DISCUSSIONS 

3.1. sEMG data sets 
The sEMG data were collected from three stroke patients, 
recording the activities of the following seven muscles: the 
anterior and lateral deltoid, the triceps (long head and lateral), 
the biceps brachium, latissimus dorsi, and the brachioradialis. A 
bipolar montage was used to minimize the effect of crosstalk. 
The 7-channel sEMG signals were amplified, high-passed 
filtered at 20 Hz to reduce movement artifact, and sampled at 

600 Hz. Since each stroke subject had only one arm 
predominantly affected the other arm was used as a comparison. 
For each subject, six reaching movements were performed 5 
times repeatedly on each side.  

3.2. Learned Bayesian networks 
At first, a BN of every trial was learned with a 100-step MCMC. 
In order to create a more robust BN representing the subject’s 
performance, separate BNs were trained on each trial and later 
combined. If a given arc across all single-trial BNs occurred 
greater than 60 % of the time, that arc was selected for the final 
BN. In order to verify the above procedure, the data from each 
trial were permuted (each channel separately) and the robust BN 
network was recalculated to ensure that no significant arcs 
survived. 

Examples of the learned DAGs, extracted from the 
computed BNs are shown in Figure 3. The two DAGs are of the 
same patient, the same task, but different sides. It is noted that 
the unaffected side has more arcs than the affected side, 
suggesting that stroke may damage the cooperation/interaction 
of muscles, especially of the biceps-brachium. The lateral 
deltoid and lateral triceps were highly connected with other 
muscles, indicating that they play central roles in the 
cooperation between muscles in this reaching movement. 

3.3. Sub-network Patterns and Muscle Synergies  
The sub-network pattern analysis revealed that the connection 
patterns of the stroke affected side were quite different from that 
of the unaffected side. As one example, considering one 
reaching task and all subjects, Figure 5 shows the distribution of 
the five possible 3-vertex patterns (as seen in Figure 2A) in the 
EGs representing the unaffected and affected sides, respectively. 
The histogram indicates that connection pattern 2 is dominant in 
both sides; while connection pattern 5 is dominant only in the 
unaffected sides and pattern 1 is dominant only in the affected 
sides. Recall that pattern 5 means a full interaction between 3 
muscles while pattern 1 means no active interaction. Thus, it is 
suggested that stroke may damage the cooperation capability 
between muscles, by a tendency of movement towards a pattern  
1. 

A few specific muscle triples appear consistently in different 
reaching movements. Figure 4 shows the combined graph of 
these functional muscle connections of a patient.  The muscle 
triple <Anterior Deltoid, Biceps-Brachium and Brachioradialis> 

Brachioradialis

Lateral Deltoid

Anterior 

Deltoid

Biceps-

Brachium

Triceps:Long 

Head

Triceps: Lateral

Latissimus 

Dorsi

Figure 3. Example of the learned Bayesian learned. Both graphs are of the same 
subject and the same task. The left graph is for the less-affected and the right graph is 
for the more-affected side. 

Figure 4. The consistent connection 
patterns of a few specific muscles of a 
subject. All the arcs appear in the less 
affected side while the dashed do not in 
the more affected side.
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cooperate in the same consistent pattern on both sides. However 
muscle triples <anterior deltoid, biceps-brachium and lateral 
deltoid>, <biceps-brachium, triceps lateral and lateral deltoid> 
and <triceps long head, triceps lateral and lateral deltoid> 
cooperate in one consistent pattern on the unaffected, but 
another consistent pattern on the affected side.  These triples can 
be identified as the functional muscle synergies and they warrant 
further investigation.   

3.4. Classification Performance 
The data of one patient’s unaffected side in one movement task 
were picked out to train the BN. Then, the data of other patients’ 
were used to test the classification performance of the BN. The 
test data contains different trials, different arms and different 
tasks. 

Figure 6 shows that the unaffected side and the affected side 
are completely separated. We note that the MLL of the 
unaffected sides across all subjects is higher than that of the 
affected sides, and that the BN used for classification was 
trained on a single subject’s unaffected side. This suggests that 
the BN-classification method can gracefully deal with 
intersubject variability.  

4. Conclusions
In this paper, we have developed a framework for discovering 
and modeling muscle networks in motor control.  By applying 
these methods to sEMG data collected from reaching 
movements in healthy and stroke subjects, we demonstrated that 
Bayesian network modeling provides a powerful tool to model 
and to analyze sEMG data. We have demonstrated that 
analyzing the sub-networks of BNs is a promising way of 
identifying functional muscle directed synergies (specific 
interacted small muscle groups). Analysis of BNs at different 
levels can provide different insights into the underlying 
muscles’ functions. Network analysis suggests that stroke 
disease may damage the effective cooperation between a few 
specific muscles during reaching movements. 

As BNs can be generalized in various ways, dynamic BNs 
will be explored in the future to study the dynamics of the 
muscle networks. Hidden vertexes can also be included to 
represent the neural cells in modeling the motor control.  
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Figure 6. The mean log likelihood (MLL). The MLL is of 
different subjects, different tasks and different arms. 
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