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ABSTRACT

This paper investigates the problem of two-

dimensional shift estimation between two sinusoids,

proposing a method based on a least square plane fitting of 

the phases of two complex functions. The complex

functions are defined using the cross-correlation and its

Hilbert transforms. This estimation method is shown to be

unbiased for long signals and high signal-to-noise ratios.

The case of truncated signals is considered and an

iterative version of the estimator, giving more accurate 

results in these situations, is proposed. 

1. INTRODUCTION 

Two-dimensional shift estimation has its applications

in different fields. In medical imaging, in particular in

elastography, sub-pixel displacement between two 

ultrasound images needs to be estimated [1]. Most of the

existing estimations are based on the maximum of the

correlation function [2]. The shifts estimations are obtained

as the shift lags that maximize the cross-correlation

function.

As shown by Liebgott [3], the ultrasound images can

follow the model presented in this paper, based on two

shifted sinusoids (1). We propose an estimation using the

plane phases of two complex functions, defined to provide

linear phases in both directions.

In the literature, plane fitting is also used for frequency

estimation [4], [5]. Here, by fitting the measured plane

phases of the two complex functions to their analytical

forms, we are able to estimate the 2-D shifts between two

sinusoids.

The 2-D sub-sample estimation is shown to be 

unbiased for long signals. An iterative version of the

estimator is proposed as that the same accuracy for short 

signals is obtained.

2. MODEL 

In this work, we assume that the two signals are shifted

versions of a 2-D sinusoid.
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where : 
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-  and are the normalized frequencies along the two

directions
1f 2f

- 1 and 2  are the shifts to be estimated.

We note  the cross-correlation function between the

2-D signals in (1). We consider two complex functions,

constructed using the cross-correlation function and its

Hilbert transforms [6], noted or in one direction

and in both directions (
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where ]..[ MMk  and .]..[ NNl

Analytical calculations show that the phases of the complex

functions in (2) have the following forms (modulo 2 ):
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3. METHOD 

3.1. Direct estimation 

In order to estimate 1 and , we propose a new 

method consisting in a least square plane fitting of the

phases of the two complex functions. Mathematically, the

plane fitting will be carried out by minimizing the square
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errors between the theoretical and the measured phases. 

The two expressions to minimize are:
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where ),( lk  and ),( lk are the measured phases of 

the complex functions defined in (2). 

By differentiating equations (4) according to 1 (the

same results according to ) and after simplifications, we 

obtain:
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After simplifications, the estimated parameters

become:
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We observe now a noisy sequence . For 

simplicity, an additive zero-mean white Gaussian

noise , with variance , is considered. We note

 the signal-to-noise ratio corresponding to the

correlation function.
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The  Hilbert transform is linear and it does not change

the statistical properties of the noise [6]. The two complex

functions defined in (2) are consequently embedded in

additive zero-mean complex white Gaussian noise, with

variances . and  are the magnitudes

of the two complex functions defined in (8). 
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The variances of real and imaginary parts are .

The two noises and are statistically 

independent.
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As shown by Tretter [7] the additive complex noise

can be converted into an additive phase noise for high 

values of . This results in the phases
vSNR ),( lk

and ),( lk being embedded in additive zero-mean

Gaussian independent noises.
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In these conditions, the estimators in (6) are easily 

shown to be unbiased for high , with variances:
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3.2. Iterative estimation

Theoretical results show that the estimations are 

unbiased. This assumption is true if we take into account a 

large number of signal periods. In the cases of small number

of periods, even for large signal-to-noise ratios, the

estimations defined in (6) are biased. These biases are 

caused by the fact that we assume now truncated signals,

whereas the direct estimation assumed long signals. In usual

applications, the number of periods considered cannot be

very large. Consequently, we propose a method to eliminate

the biases, using a small number of periods: making the

estimator iterative. Between two iterations, the shift

between the signals is compensated by taking into account

the result of the previous estimation. Thus, the shifts we 

have to estimate are smaller as the iterations advance. 

For a given number of periods, the difference between

measured and theoretical phases (defined in (3)) becomes

smaller if the shift between the signals decreases. Therefore, 

the estimation will be more accurate if the shifts we want to

estimate are smaller, which is true when we advance in the

iterations.

Analytically, we assume that the phases defined in (3)

have the following forms:
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where  and are the differences of the 

measured phases compared to the theoretical forms at 

iteration i.

),()( lkB i ),()( lkB i

The shift estimations after i iterations become:
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The equations in (12) show that the estimations

converge towards the true values of the shifts, just as the

differences between the two phases and their theoretical 

forms tend towards zero. 

4. COMPUTER SIMULATION RESULTS 

4.1. Direct estimation 

A computer simulation was performed to show the

performance of the estimator. Numerically, we consider: 
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Fig. 1 shows the phases of the two complex functions

defined in (2), around the values of the shifts.

(a) (b)

Fig. 1. Phases of (a) and (b) around the

values of the shifts
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We observe that the phases are not linear over the 

entire domain. It may be possible to unwrap the phases to

obtain plane phases [8]. In this work, we extract a plane 

from each phase and the estimation will use only these two 

extracted planes. In order to choose the most advatageous

planes for our estimations, we extract them around the shifts

corresponding to the maximum of the correlation

function . Note that the precision of this maximum

does not influence the further estimations. It serves only to

extract the two phase planes.

),( lkR

For this simulated case (corresponding to a signal-to-

noise ratio of 50 dB), the estimator gives the exact values of 

the shifts. The quality of the estimations in the presence of

noise, in terms of mean value and of standard deviation is

given in Fig. 2.

(a) (b)

Fig. 2. Shift estimations in presence of noise (a) along m

and (b) along n 

Fig. 3 shows a comparison between the measured and

the theoretical variances as functions of SNR. 

Fig. 3. Theoretical (dashed line) and measured (solid) log-

variances as a function of SNR in dB

The measured variance is shown to be closer to the 

analytical form for high SNR. 

4.2. Iterative estimation

The simulation results of the direct estimation were 

obtained using 20 periods from each signal. If we consider

only two periods and a SNR of 50 dB, the results of the

direct estimation are biased, which shows the advantage of 

the iterative estimation. Fig. 4 shows that in three iterations

we converge towards the true values of the shifts,

considering truncated two-period signals.
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(a) (b)

Fig. 4. Estimations as functions of the number of iterations

(*) and true values of the shifts (dashed line) along

directions (a) m and (b) n 

The influence of the number of periods taken into

account is shown in Fig. 5. We can see how the measured

phase (as a function of x, for a given y) gets closer to the

expected form by increasing the number of periods.

(a) (b)

Fig. 5. Measured (solid) and theoretical (dashed line) phases 

for 2-D signals with (a) 2 and (b) 20 periods

The influence of the value of the shift on the difference

between the measured and the theoretical phases is shown in

Fig. 6 for a given number of periods. An inflection of the

measured phase is visible. The inflection point depends on

the value of the shift between the signals. It is closer to zero

lag when the shift decreases. In this case, the errors made

before and after the inflection point are compensated and

the estimation is more accurate. 

(a) (b)

Fig. 6. Measured (solid) and theoretical (dashed line) phase 

for a shift of (a) 0.2 and (b) 0.01 pixels for 2-D signals with

two periods

4. CONCLUSION 

In this paper, a new method of 2-D sub-sample shift

estimation between two sinusoids is proposed. Two

complex functions are defined, using the cross-correlation

and its Hilbert transforms, in order to have linear phases on 

both directions. The proposed estimator is based on a plane

fitting between the theoretical and measured phases.

Simulation results show the performance of the estimator

and show its accuracy in presence of additive white 

Gaussian noise.

An iterative version of the estimator is also proposed 

for a better estimation with truncated signals. We show how

for a small number of periods considered, the estimator

gives the true values of the shifts in three iterations.

These findings suggest that the method described in

this paper can be used as a 2-D local sub-pixel displacement

estimation in ultrasound imaging.
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