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ABSTRACT

This paper presents a model-based approach to correct for 

both partial volume effect and inhomogeneity in segmenting 

tissue mixtures inside each voxel of magnetic resonance 

images.  A maximum a posteriori probability (MAP) 

solution is sought.  In calculating the solution, the well-

known expectation maximization (EM) algorithm is 

employed.  The models of data likelihood and Markov 

priors for tissue mixture and bias field in establishing this 

MAP-EM framework are described in details.  A 

preliminary test is presented. 

1. INTRODUCTION 

Characterizing tissue structures and volumes from magnetic 

resonance (MR) images plays a very important role in 

clinical research and diagnosis.  A conventional approach 

usually labels each image voxel by a specific tissue type.  

This hard segmentation ignores partial volume (PV) effect 

and, therefore, losses both the detail of the tissue structure 

and the accuracy in quantifying the tissue volume.  An 

alternative approach has been attempted to find the 

probability of a specific tissue type inside each voxel [1-5].  

While this soft segmentation is theoretically attractive in 

dealing the PV effect, it usually either has a very 

complicated model of numerically intractable or an 

approximated model of less numerical accuracy.  A more 

specific model for PV segmentation was explored by Choi 

et al. [6] by dividing each voxel according to assumed tissue 

types.  Each tissue type inside a voxel was described by a 

random variable.  Choi et al. attempted to quantify directly 

the mean of each random variable for the corresponding 

tissue type in that voxel.  It has been a very challenging task 

to quantify directly the mean of a random variable because 

of the incompleteness of measurements.  Another more 

specific model for PV segmentation was explored by 

Leemput et al. [7] by dividing each voxel into sub-voxels 

and by the use of the EM (expectation-maximization) 

algorithm [8] to consider the data incompleteness.  All the 

sub-voxels were then labeled by a hard segmentation 

algorithm.  The ratio of the number of a specific tissue label 

over the total number of the sub-voxels in a voxel reflects 

the proportion of that tissue type in the voxel.  This discrete 

PV model becomes more accurate when each voxels is 

divided into a larger number of sub-voxels.  We have 

previously presented a continuous PV model [9] which 

quantifies the tissue mixtures in each voxel based on the 

EM algorithm.  This work extends that PV model to include 

inhomogeneity effect in MR images and presents an 

efficient method to compute the tissue mixtures in each 

voxel. 

2. METHOD 

2.1. Partial Volume Model with Inhomogeneity Effect 

Let the acquired MR image density distribution Y be

represented by a column vector T
Nyyy ],...,,[ 21

, where iy
is the observed density value at voxel i and N is the total 

number of voxels in the image.  (For multi-spectral MR 

images, iy  becomes a vector).  Assume the acquired image 

{ iy } contains K tissue types distributed inside the body.  

Within each voxel i, there possibly are K tissue types 

(although frequently one or two tissue types are present in a 

voxel), where each tissue type has a contribution to the 

observed density value iy  at that voxel.  Let tissue type k

contributes ikx  to the observation iy  at voxel i, then we 

have: 

K

k iki xy
1

.                             (1) 
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Assume the unobservable variable ikx  follows a 

Gaussian distribution with mean ik  and variance 2
k .  If 

voxel i is fully filled by tissue type k, then ikx  becomes 

observable variable, i.e., iy  in this case, with Gaussian 

probability distribution characterized by tissue parameters 

( k  and 2
k ).  If voxel i is partially filled by tissue type k

and let ik  be the fraction of tissue type k inside that voxel, 

then we have: 

kikik , 22

kikik , 1
1

K

k ik

10 ik ,     ( k ,
2
k , ik ,

2
ik ) 0.            (2) 

From equation (1), the observed image density value at 

voxel i is expressed as i
K

k kikiiy
1

, where 

i  is a Gaussian noise associated with the observation iy
at voxel i with its mean being zero and variance of 

K

k kik
K

k iky i 1

2

1

22 .  Notation i  reflects 

the bias field or inhomogeneity effect at voxel i which is a 

result of non-uniform RF field across the body and tissue 

response to the local magnetic field [10, 11].  The 

probability distribution of sampling { iy }, given the model 

parameters { ik , i ,
2, kk }, assuming that { iy } are 

statistically dependent from each other, is: 
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where  represents tissue mixture vector T
N ],...,,[ 21

with 
T

iKiii ],...,,[ 21 , and the tissue model 

parameters are T
K ],...,,[ 21

 and 

T
K ],...,,[ 22

2
2
1

2 .  The probability distribution of 

sampling { ikx }, given the tissue model parameters 

{ ik , i , 2, kk }, is: 
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where X represents vector T
Nxxx ],...,,[ 21  with 

T
iKiii xxxx ],...,,[ 21 .  Equations (3) and (4) describe 

the same continuous PV model of equation (2) in two 

different spaces under the connection of equation (1).  In the 

space of observable data { iy }, determining the model 

parameters from incomplete data { iy } via equation (3) can 

be very complicated [5].  In the space of unobservable 

complete data { ikx }, the well-known EM algorithm [8] is 

readily available to determine the model parameters via 

equation (4) by conditional expectation under the condition 

of equation (1).  This will be described in detail in Section 

2.2 below. 

The task of determining the model parameters { ik ,

i , 2, kk } given the acquired image data { iy } is 

specified by a posteriori probability which requires 

specification on the a priori distribution of { ik } and 

{ i }.

2.1.1. A Priori Model on the Mixture Parameters { ik }

In image processing applications, a Markov random field 

(MRF) prior or regularization is usually used for a 

maximum a posteriori probability (MAP) solution, where 

the MRF prior has the following form: 

2

,1

)(exp(
1

)Pr( jkik

K

Njk
ijii

i
Z

N         (5) 

where iN  denotes the neighborhood of voxel i,  is a 

parameter controlling the degree of the penalty on mixtures 

{ ik }, ij  is a scale factor which depends on the order of 

the neighbors, and Z is the normalization factor for the MRF 

model.  In this study, only the first-order neighborhood 

system is considered and ij  is the same for the six first-

order neighbors if the image has a uniform spatial resolution 

in three dimensions.  When the axial resolution is twice 

lower than the transverse resolution, then ij  is twice 

smaller for the two neighbors in the axial direction than the 

four neighbors in transverse plan. 

2.1.2. A Priori Model on the Bias Field Parameters { i }

A similar MRF prior can be specified for { i } as [12]: 
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 (6) 

where R equals 2 for two-dimensional (2D) slice images and 

3 for 3D volume images.  Notation D is the standard 

forward finite difference operator along the corresponding 

directions.  Symbol * denotes the 1D discrete convolution 

operator.  The first-order regularization term (associated 

with 
1
) penalizes a large variation in the bias field and the 

second-order regularization term (associated with 
2

)

penalizes the discontinuities in the bias field.  Both 
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parameters 
1
 and 

2
 play a similar role as  does, 

controlling the degree of smoothness of the bias field. 

2.2. MAP-EM Algorithm for Parameter Estimation 

Including the MRF priors (5) and (6) into equation (4) for 

the posteriori cost function and performing the E-step or the 

conditional expectation of the EM algorithm after an 

operation of log on the cost function, we have: 

]})()([2)(2

)]2(
1

)2ln({[
2

1(.)

1,

2
2

1

2
1

2

222)()(2

2

2
,

1,1

R

lj
ilj

Nj

R

j
ijjkikij

kiki
n

ikkiki
n

ik
kik

kik

KN

ki

DDD

xxQ

i

 (7) 

where the conditional expectations for ikx  and 
2
ikx  are 

given by: 
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The maximization or the M-step of the EM algorithm 

determines the (n+1)-th iterated estimate, which maximizes 

the conditional expectation of equation (7) respect to the 

corresponding parameter.  For parameters { k }, we have 
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For parameters {
2
k }, we obtain: 
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For the mixture { ik }, when only two tissue types are 

present in a voxel, i.e., 12 1 ii , we have: 
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where
22
kikik  and )(2

2
)(2

14 n
i

n
i .  When three 

tissue types are present in a voxel, the projection strategy of 

[6] is adapted to determine the mixtures by: 
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In a similar manner, we can determine four and more tissue 

types in a voxel. 

For the bias field parameter { i }, we have: 
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where
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Solving equation (14) for { i } can be performed by the 

Jacobi iterative scheme [12]. 

3. RESULTS 

A set of brain MR images (i.e., Figure 1(a) T1- and Figure 

1(b) T2-weighted scans) was used to test the above 

presented method.  For reference, a hard segmentation using 

method of [1] is shown by Figure 1(c).  Other pictures are 

the segmented tissue mixture images of white matter-Figure 
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1(d), gray matter-Figure 1(e) and cerebrospinal fluid-Figure 

1(f).  Figure 1(g) is the estimated result of the bias field. 

(a)                    (b)                  (c) 

(d)                   (e)                   (f)                    (g) 
Figure 1:  Tested results from a set of images of (a) T1 - and (b) T2

- weighted scans.  Hard segmentation (c) is shown as a reference 

for comparison purpose.  Pictures (d), (e) and (f) are the segmented 

white matter, gray matter, and cerebrospinal fluid tissue mixture 

distributions, respectively.  Picture (g) is the estimated bias field. 

4. DISCUSSION

Modeling the tissue mixtures in a continuous space in terms 

of unobservable variables, via the EM algorithm, is a new 

attempt of this work, compared to the previous research in 

the field.  The statistical distribution of the unobservable 

variables is consistent with that of the observable data, i.e., 

a Gaussian distribution, which has been widely accepted in 

segmentation of MR images.  The conditional expectation 

of the unobservable variables given the observed image data 

is very useful for estimation of the tissue mixture and model 

parameters from incomplete data.  This conditional 

expectation is especially useful when the number of the 

underline tissue types in a voxel is small, such as less than 

five.  In such case, the conditional expectation, given the 

measured datum, can have a significant impact on the 

estimation of the parameters of these five variables.  At the 

maximization step of the EM algorithm, all the tissue 

mixture and model parameters are updated simultaneously 

under the conditional expectation.  This ensures a 

monotonic increase of the posteriori probability [8].  

Further optimization of the calculations in the maximization 

step is currently under progress.  The presented solution to 

the PV effect is theoretically attractive and its usefulness in 

practical applications needs more extensive investigation, 

especially by phantom and patient data evaluation. 
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