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ABSTRACT

The dynamic acoustic radiation force produced by two
confocal ultrasound beams, can be used for imaging the
acoustic properties of tissue. In this paper we investigate
how nonlinear propagation in an attenuating medium can
affect image quality. Specifically, the effects of the second
harmonic on the image formation process are studied, by
means of the system point-spread-function (PSF). Incorpo-
ration of tissue nonlinearities in the model and extraction
of higher-harmonic information, indicates that a more lo-
calized radiation force distribution and reduced sidelobe ef-
fects can be achieved and this could improve image resolu-
tion.

1. INTRODUCTION

When a continuous ultrasound wave propagates in an at-
tenuating medium, both an oscillating and a steady-state
force component are produced. The latter is called the radi-
ation force. By modulating the ultrasound wave (typically
at quite low frequencies) the radiation force varies in time
and the resulting force is usually referred to as a dynamic ra-
diation force. Because relatively high-frequency ultrasound
can penetrate and be focused in tissue, it is possible to gen-
erate a highly localized radiation force that can be used as a
probe, to image the elastic properties of tissue for diagnostic
applications [1]-[3].

Fatemi and Greenleaf introduced a new ultrasound imag-
ing modality, which they called vibro-acoustography [2].
They showed that it is potentially capable of producinghigh-
resolution maps of the mechanical properties of an object,
that vibrates in response to a highly localized dynamic radi-
ation force. This method belongs to a general class of tech-
niques, commonly referred to as elasticity imaging. Mea-
surement of the vibrations could be useful for assessing tis-
sue stiffness and potentially aid to diagnose the presence of
abnormal structures within body tissue. Fig. 1 illustrates the
method setup. The transducer consists of two confocal CW
ultrasound sources excited at slightly different frequencies,
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Figure 1: Radiation-force imaging. By scanning the focal
point over the ��-plane an image of the elasticity distribu-
tion can be obtained.

resulting in a dynamic radiation force at the common focal
point.

In most elasticity imaging techniques, the assumption
has been made that ultrasound beams propagate in a linear
manner. However, for high-intensity focused ultrasound,
such as that needed to produce a significant radiation force,
nonlinear effects can become important, particularly the gen-
eration of higher harmonics [4]. By extracting harmonic in-
formation, a smaller and less distributed effective sample
volume is generated, leading to clutter suppression, reduced
image artifacts (less noise and blur) and likely improved res-
olution.

Specifically in vibro-acoustography, the case of linear
propagation of ultrasound in an ideal fluid has been treated
so far. In that formulation, if no target exists along the wave
path, then there is no net radiation force in the fluid [5].
However, this is not true for dissipative (lossy) fluids. When
we deal with attenuating media, where viscous losses occur,
the radiation force is nonzero even in the absence of any
target object. In fact, as shown in [6], viscosity plays an
important role in the assessment of tissue elasticity.

The dynamic acoustic radiation force, produced by two
confocal ultrasound beams under nonlinear propagation in
tissue, is investigated in this paper. Based on the nonlin-
ear computational model of [7], the dynamic force is mod-
elled for the �-th harmonic frequency (� � �� �) and the im-
age formation process is studied through the system point-
spread-function (PSF). Incorporating tissue nonlinearities in
the propagation model, could improve resolution of vibro-
acoustic images.
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2. NONLINEAR SYSTEM MODEL

In this section, the dynamic radiation force exerted on a
point target (particle) of an infinite isotropic, homogeneous
and attenuating medium is considered. Using a suitably
modulated focused ultrasound beam that propagates in an
attenuating medium, it is possible to create an arbitrary vol-
ume force distribution in the focal zone. It can be shown to
be given by [8]:

F��r� �� �
���I��r� ��

�
� � � �� �� � � � (1)

where � is the speed of sound in the medium, ��� denotes
the �-th harmonic frequency (�� is the fundamental fre-
quency) and I��r� �� is the corresponding acoustic intensity
vector. A power-law frequency dependance for the attenu-
ation coefficient has been assumed. For the �-th harmonic
wave it is given by ����� � �����

�, where � is typically
close to unity in tissue. In vibro-acoustography,we are only
interested in the time-varying (dynamic) component of the
incident intensity vector.

To achieve a localized dynamic (oscillatory) radiation
stress field, two intersecting continuous-wave (CW) beams
can be used. In the intersection zone, a modulated ultra-
sound field is produced. Specifically, we assume two coax-
ial confocal CW ultrasound beams � and � excited at fre-
quencies 	� � 	���	
� and 	� � 	���	
�, where 	�

and �	 are the center and modulating frequencies, respec-
tively, with �	 � 	� (see Fig. 1). The beams are taken
to propagate in the �-direction and the common focal point
r� to be located at ��� �� ���. In the linear-propagation case,
the resultant velocity potential at the region of intersection
can be written, by using the principle of superposition, as
follows:

��r� �� � ���r�
���� � ���r�
���� (2)

where ���r� and ���r� are the complex amplitude functions
of the ultrasonic beams (phase information has been ignored
for the sake of simplicity).

It can be shown that the intensity vector and consequently,
the radiation force vector of equation (1), has a time-varying
(harmonic) component at the difference frequency�	. This
can be described by:

I���� �r� �� �
�

�
�
������r�v����r� � ����r�v����r�	


������

(3)
where � denotes the complex conjugate. For � � �, the
pressure amplitudes ���, ��� and velocity amplitudes v��,
v��, correspond to the two beams 	� and 	�, respectively.

If nonlinear propagation occurs, the resultant intensity
field at the region of interference will contain terms not
only at the frequencies 	� and 	�, but also “combination
tones”, with frequencies ��	� � ��	� (where ��� �� are
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Figure 2: Axial velocity profiles up to third-harmonic (� �
�� �� 
) for both beams.

positive integers) [4]. However, for the purpose of vibro-
acoustography, all high-frequency terms can be neglected,
as they do not fall within the low acoustic frequency range.
If we restrict our attention to the case of ��=��=�=�, i.e.
up to second-harmonic generation for each confocal beam,
only two low-frequency (dynamic) components of the re-
sultant intensity vector can be extracted: (a) a component
at the beat frequency �	 � 	� � 	�, arising from the in-
terference of the two fundamental waves, as described in
equation (3) for � � � and (b) another low-frequency term
at twice the previous frequency, i.e., at an angular frequency
of ��	� � 	��, arising from the interference of the two
second-harmonic signals. In the latter case, the dynamic
(low-frequency) intensity vector can be described also by
the above equation, if we set � � �.

Based on equation (1), the dynamic radiation force cor-
responding to the �-th harmonic, is described by:

F���
� �r� �� �

�������� � ���	
�I���� �r� ��

�
� � � �� �� � � �

(4)
where I���� �r� �� is given by equation (3). The attenuation
factor is shown to be affected by the sum of the incident
harmonic frequencies ��� and ���. It should be noted, that
the second-order field resulting from the nonlinear interac-
tion of the two primary beams (that would contribute an-
other low-frequency term �	) [4], has not been taken into
account.

The dynamic radiation force described above, causes
tissue in the focal zone to vibrate at the difference frequency
(see Fig. 1). In response, the zone emits low-frequency lon-
gitudinal waves, known as acoustic emission, whose ampli-
tudes depend on the radiation force and the elastic prop-
erties of the medium [2]. For the nonlinear-propagation
case, the received acoustic emission signal can be filtered
at multiples of the difference frequency, i.e. at ��	 (� �
�� �� � � ��, thereby producing the fundamental and harmonic
elastography images.
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Figure 3: Spatial pattern of the normalized radiation force
at the focal plane (� � � cm) for (a) the fundamental (��)
and (b) the second harmonic (���).

3. IMAGE FORMATION

To produce an image in vibro-acoustography, the region of
interest is scanned either on the ��-plane (�-scan, paral-
lel view) or the ��-plane (�-scan, transverse view) and the
amplitude of the acoustic emission, recorded at a specific
focal point of the plane, is assigned to the corresponding
pixel of the image output (see Fig. 1). Often, the perfor-
mance of an imaging system is characterized in terms of its
point-spread-function (PSF), which is the image produced
by a point-target and describes the degree of blurring of the
point-target. To determine the system PSF both for the fun-
damental and the second harmonic, we consider a unit point
target ����� � Æ��� � ��� and we assume that for a fixed
focal point �� on the ��-plane (�-scan), the object can vary
its position �� in the neighborhood of ��. This neighbor-
hood is assumed to be small enough, such that the medium
transfer function (which describes the medium characteris-
tics and boundary conditions) remains unchanged.

It is convenient to define the normalized PSF as the nor-
malized response of a unit point-target to the dynamic radi-
ation force of equation (4), i.e.:

���r��r�� �
�

���
� �r��r��

�
���
� �r��r��

�
F���
� �r��r��

F���
� �r��r��

	 
 � �	 � (5)

where � ���
� (
 � �	 �) is the acoustic emission field at the

difference frequencies �� and ���, for the fundamental
and the second harmonic, respectively. An inherent assump-
tion of equation (4), is that the emitted field can be accu-
rately measured by the hydrophone and as a result, the PSF
is spatially shift-variant. Moreover, the radiation force has
been defined in the 3-D space. However, only its axial com-
ponent (parallel to the beam) will be considered in our sim-
ulations, as it contributes the most to the formation of the
total force.

By convolving the function of a given object with the
point-spread-functionsdescribed above in a piece-wise shift-
invariant manner, two images can be formed, corresponding
to 
 � � and 
 � �. It is therefore important to reliably de-
termine ���r��r�� and ���r��r�� from equation (5), as this
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Figure 4: Simulated PSF amplitudes on the focal plane for
(a) the fundamental and (b) the second harmonic. Spa-
tiotemporal variations of the dynamic forces on the focal
plane over 2 periods of the beat frequencies: (c) � � � ���

(fundamental period) and (d) �� � �����
� (second-
harmonic period). Vertical axis: ���mm lateral distance,
horizontal axis: time.

would enable us to apply an inverse process (deconvolution)
to each harmonic image and obtain deblurred estimates of
the true scanned object, e.g. similarly to the method pro-
posed in [9] for conventional B-mode ultrasound images.
The second-harmonic signal is known to have better res-
olution and lower sidelobes compared to the fundamental,
however its amplitude is lower, leading to lower signal-to-
noise-ratio (SNR). Therefore, as noted in the above work, a
subsequent fusion of the deblurred harmonic images could
result in a single image output of improved resolution.

Finally, it should be noted that when we deal with vis-
cous (dissipative) fluids, except for the acoustic emission
signal, shear waves will also arise in response to the radi-
ation force that will propagate away from the beam axis.
Approximate expressions of the tissue displacement fields,
known as the elastodynamic Green’s functions, have been
derived for viscoelastic media [6]. However, in our analy-
sis so far, we have ignored the effects of shear-wave prop-
agation on the image formation process. A more thorough
description of the underlying physics behind vibro-acoustic
image synthesis, will be presented in a subsequent paper.

4. SIMULATION RESULTS

Two simple coaxial concave radiation sources were consid-
ered, with radii of ��	 cm for beam-� and ���
 cm, ��� cm
for the inner and outer rings of beam-�, respectively, a com-
mon focal depth of ��� cm and source pressure amplitude
of ��� kPa. The sources were assumed to be excited at
frequencies 
� � �
�� and 
� � �
��, where 
� � ��	
MHz and �
 � �� kHz. The propagating medium was
taken to have: speed of sound � � �		� m/s, a density of
��	� kg/��, a nonlinearity coefficient of 	, � � ��� and
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Figure 5: Amplitude of the normalized (steady-state) PSFs
for the fundamental and the second harmonic on the focal
plane (logarithmic scale).

�� � ��� dB/(cm MHz���). In order to calculate the pres-
sure and velocity fields generated by the transducers, i.e.,
���, ��� and v��, v�� (� � �� �� � � �), we made use of a ���-
order operator-splitting nonlinear model described by Zemp
et al. [7]. This enabled the harmonic field distribution to be
calculated up to � � � with reasonable accuracy.

Figure 2 shows the axial velocity profiles of the first
three harmonics for beam-� (left) and beam-� (right). Fifty
propagation planes were used to capture the axial variations
of the harmonics. Closer to the transducer, the approxima-
tions used in the nonlinear propagation algorithm cause er-
rors in the calculated velocity profiles. The third harmonic
(� � �) will be ignored in our subsequent simulations.

As described in Section 2, at the focal plane (� � � cm)
where the beams intersect, two dynamic components of the
radiation force arise at �� and 2��, due to the interfer-
ence of the fundamental (� � �) and the second-harmonic
(� � �) waves, respectively. The spatial patterns of the dy-
namic radiation force at a given time instant, can be seen in
Fig. 3(a) for � � � and Fig. 3(b) for � � �, based on equa-
tions (3), (4) and the calculated pressure and velocity fields.
The forces have been normalized with respect to the max-
imum of the fundamental. The second harmonic is �����
of the fundamental at the focal point. This was found, sub-
sequently, to result in an acoustic emission signal 	 ���

� of
amplitude approximately equal to ���	� of the amplitude
of 	 ���

� .
The two point-spread-functions (PSFs) corresponding

to �� and ���, were also simulated based on equation
(5) and their amplitudes can be seen in Fig. 4(a) and 4(b),
at a 
��mm x 
��mm transverse view of the focal plane.
Figs. 4(c)-(d) show the spatiotemporal distribution of the
dynamic force over two periods �
� and �
� of the corre-
sponding beat frequencies.

The lateral profiles of the normalized PSFs are shown in
Fig. 5 in a logarithmic scale. Visual inspection of the above

figures, demonstrates that �� has a narrower mainlobe and
lower sidelobes than ��, that can provide sharper focusing
and reduced image artifacts. Specifically, the spatial reso-
lution of �� in the lateral direction (defined by the diameter
of the mainlobe at �
 dB from its peak) is approximately
��� mm and its first sidelobe is under ��� dB. For � � �,
the lateral resolution of �� is calculated to be approximately
��� mm, i.e. an improve of almost 	�� is achieved, while
its first sidelobe is under����� dB.

5. CONCLUSIONS

Modelling of the dynamic radiation force produced by two
intersecting nonlinear ultrasound beams in tissue, has been
presented for vibro-acoustic imaging. The effects of the sec-
ond harmonic were also studied on the image formation pro-
cess. To the best of our knowledge, there has been no pre-
vious publication that accounts for the effects of harmonic
generation in an attenuating medium for vibro-acoustography
applications. Incorporation of tissue nonlinearities in the
propagation model, was shown to provide a more localized
radiation force field and reduced sidelobe effects on the sys-
tem PSF, which can be used to improve vibro-acoustic im-
age resolution.
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