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ABSTRACT

Sequence alignment or decoding in molecular biology is
mostly done via computationally expensive dynamic pro-
gramming(DP) based approaches. Unfortunately, as se-
quencing errors are discovered frequently, researchers must
repeat all previous similarity analysis for the erroneous se-
quence. This can take hours or days. In this work, we de-
rive relative tolerance bounds on node distances from a root
node that guarantee that partial shortest path distances re-
main optimal. We then propose an algorithm that uses these
bounds to skip all unperturbed parts of a sequence when re-
computing an alignment. We also discuss techniques to re-
duce the memory requirements of the algorithm by focusing
on the highly conserved segments of the sequence. Experi-
mental results establish that our proposed alignment proce-
dure can update alignment decisions of modified sequence
with 4.6% to 18% of the number of computations required
by the normal Needleman-Wunsch algorithm, depending on
sequence length. Higher computational savings are achieved
with longer sequences.

1. INTRODUCTION

Dynamic programming(DP) has been the fundamental tool
for sequence alignment including both pairwise and profile
alignment in molecular biology[1, 8]. Recently, it has be-
come more important to detect remote homologies by query-
ing a newly discovered sequence against a tremendously
large number of sequences in public domain biological se-

quence databases1. However, it is clear that a large number
of erroneous sequences appears in a data bank since nearly
every time a listed gene is sequenced a second time, errors
are reported. In general, a sequencing error is due to the
accumulation of mistakes compounded through an experi-
ment, including the misincorporation of bases in polymerase-
chain-reaction amplification of templates, compression in se-
quencing ladders, misreading of autoradiographs, mistyping
of results, and miscommunication of the sequences to the
data base[9]. In today’s collaborative research environment,
any conclusion derived from this updated sequence should
be reevaluated. The major challenge is that sequences are
quite lengthy and so, repeating the similarity evaluation for
all sequences that was done previously takes hours or days.

None of the previous algorithms, including the K-
best score, pruning, stack decoding or the heuristic based
approach[7] tries to use DP computational outcomes to speed
up rematching. In this work, we recast the updated alignment
problem in a weighted acyclic graph(WAG) setting. This al-
lows us to analyze the effect of a change in an arc length[4]

1Last August, DNA/RNA sequence data was reached to 100 billions
bases of the genetic codes over 165,000 organisms

due to an error correction on a previously computed shortest
path. Our proposed algorithm updates alignment decisions
with no more than 4.6% to 18% of the calculations performed
by the normal Needleman-Wunch(NW) algorithm on the per-
turbed sequence for a pair of sequences having greater than
20% similarity.

In section 2, we review the prior work on a single arc tol-
erance analysis and we observe the difficulty of reusing the
DP results from a previous alignment. The proposed algo-
rithm is described in section 3. In section 4, our approach is
verified with experimental results. We conclude the discus-
sion with potential future work in section 5.

2. THE DIFFICULTY IN MAKING DYNAMIC
PROGRAMMING REUSABLE

2.1 Single Arc Tolerance

In the network routing problem under the dynamic behavior,
a sensitivity analysis on a single arc in WAG has been ex-
plored to determine by how much each arc length can be in-
dividually perturbed without changing the previous optimal
path in the network[4]. The result shows that any perturba-
tion between two nodes that stays within its tolerance bound
defined below, does not affect the optimality of the tree.

Definition 1. Given a spanning tree of an weighted acyclic
graph, the arc tolerance is the maximum increment or decre-
ment in the length of a single arc that does not affect the
optimality of the tree.

In Fig.1, for example, thick solid lines and dashed lines
represent an edge(e) on an optimal tree(T ) and a non-tree
edge(è) respectively. Now, we are curious about e1

3’s tol-

erance bound. If e1
3 itself is cut off, two node sets(N−(e1

3)
and N+(e1

3)) can be easily identified. Suppose that è6
9 and è2

5
has shortest length in each direction among all è’s crossing
N−(e1

3) and N+(e1
3). Then, the e1

3’s bound is calculated as:

|e1
2|+ |è2

5|− |e3
5| ≤ |e′13 | ≤ |e1

2|+ |e2
4|+ |e4

9|− |e3
6|+ |è6

9|,
|e1

3|−∆e2
5 ≤ |e′13 | ≤ |e1

3|+∆e6
9,

−∆2
5 ≤ δ (e1

3) ≤ ∆e6
9

(1)

Thus, both è6
9 and è2

5 hold the bound of e1
3. From the inequal-

ity, it is vital to view ∆e2
5and ∆e6

9 as the cost to pay when,

by mistake, we expand T with a non-tree edge è2
5 and è6

9 re-
spectively. If the change in the arc length does not satisfy
this bound, a new optimal tree T ′ should be constructed from
scratch.
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Figure 1: single arc tolerance evaluation

2.2 Alignment Graph and Problem Definition

Given two sequences s1[1 · · ·M]and s2[1 · · ·N], a sequence
alignment is to transform one into the other to maximize the
total alignment value with a pairwise scoring matrix defining
a similarity score between two symbols. Let di, j be the opti-
mal score of s1[1 · · · i] and s2[1 · · · j]. A DP procedure on the
two sequences yields an alignment as following.

di,0 = i ·Σ(−,s2[1]),d0, j = j ·Σ(s1[1],−)

di, j = max

⎧⎨
⎩

di−1, j +Σ(s1[i],−),
di−1, j−1 +Σ(s1[i],s2[ j]),
di, j−1 +Σ(−,s2[ j])

(2)

As illustrated in Fig. 2, the usual DP algorithm on linear se-
quences can be generalized to weighted acyclic graphs(G)
where the edge length is represented by one of scores of
(mis)match and indels(i.e., insertion and deletion). Then the
alignment corresponds to source-to-sink optimal paths(O) in
the sequence graph[7].

Let us now formulate our problem. In Fig 2, we already
obtained an alignment, O from s1 and s2. Now, suppose a
symbol, s2[2] has bee updated. How do we obtain a new
alignment O′ and its new score without running another DP
procedure on the new sequence? In general, it is difficult to
reuse previous results of DP since it is based on the divide-
and-conquer method to solve problems by combining the so-
lutions of subproblems recursively as in Eq2. Let di, j be a
path distance from a root to a node ni, j in T . The pertur-
bation changes all edge lengths between column 1 and 2 si-
multaneously and then each max operations at column 2 may
yield a new distance path d′

i,2 with a new back-trace pointer.

Furthermore, updates in multiple columns make reusability
of DP even more difficult. Below, we discuss about the pre-
vious DP intermediary result can be useful to boost up an
update matching when we encounter a perturbed sequence.

3. DYNAMIC SENSITIVITY ANALYSIS

Our proposed algorithm is bi-fold. First, we describe how
the single arc tolerance analysis can be extended to solve our
updating alignment problem. Furthermore, we discuss which
information during the DP procedure should be stored in the
off-line computation. Secondly, when a perturbation occurs,
we describe how the information can be used in the on-line
computation.

3.1 The Relative Node Tolerance Bound(RNTB)

We first consider how the updated distance from the root
node to each node in a column can be decomposed so that
the prior calculations can be reused. In Fig.2, let di,2 be

a distance from n1,1 to ni,2 and δ (di,2) be a perturbation
in di,2, i.e., the new distance in column 2 is updated to
d′

i,2 = di,2 + δ (di,2). If the node distance is recomputed, we

can perform the sensitivity analysis on the node as follows.

Definition 2. Given an optimal spanning tree T (s1,s2) cor-
responding to G(s1,s2) that is a directed acyclic alignment
graph of two sequences s1 and s2, the node tolerance is the
maximum increment δ+(ni, j) or decrement δ−(ni, j) in the
distance of a single node ni, j from a root that does not affect
the optimality of T (s1,s2).

Now note that the result from Definition1 is not applica-
ble to our problem directly since a perturbation affects the
distance of all nodes in a column to a root node simultane-
ously. We therefore consider all pairs of nodes that sit on two
branches connected by a non-tree edge downstream from the
perturbation and calculate a bound on the relative perturba-
tion between the distances from a root node to each pair of
such nodes that will not affect optimality. We call this bound
a relative node tolerance(RNTB).

Definition 3. The relative node tolerance bound Φ(u:v, j)
is the maximum relative increment δ+(du:v, j) or decrement
δ−(du:v, j) between the distances du, j and dv, j of the two
nodes from a root node that does not affect the optimality
of T (s1,s2).

Each non-tree edge è not on T has an extra cost ∆(è) that
must be incurred if è becomes part of T [10]. We collect all
è and sort the |∆(è)| in an increasing order. Next, starting
from the smallest value, we assign the bounds to each pair of

nodes. Back to our example, suppose that è4,4
4,5 has the small-

est cost2. While tracing back from both the tail and the head

of the è4,4
4,5, we propagate ∆(è4,4

4,5) along the two branches, b1

and b2 shown in Fig.2. In general, ∆(è) is propagated as
Φ(u:v, j) for a pair of nodes on each branch all the way back
to the root node until we come across the first node whose
RNTB has been assigned in a previous propagation step or a
shared node between the two branches. Refer to [3] for more
detailed discussion.

3.2 Delta Propagation

Once the calculation of all RNTBs is completed, a reusable
DP-based rematching procedure is available through the on-
line computation. Note that in Fig.2, two perturbations oc-
cur in column 2 and 5. In column 2, whenever δ (du:v,2) of
a pair of nodes niu,2 and niv,2 stays within their Φ(u:v,2)’s,

each δ (di,2) is added into a node that is on its correspond-
ing branch at column 5, right before the next perturbation,
δ (di,5). This means that T ′ reuses the previous DP’s out-
come for this skipped part of the alignment without breaking
a partial tree starting from column 2 to 5 T2 �→5. We call this
procedure delta propagation.

3.2.1 Reduced Resource Selection

Unfortunately, a complete set of Φ(u:v, j) constraining all pairs

of nodes in each column j takes O(M2N) space. In general,
it is infeasible to store all RNTBs. In building DP resource
of RNTBs from the previous section, therefore, we use two

2i.e.,−(d3,4 + e3,4
4,5)+(d4,4 + è4,4

4,5)
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Figure 2: alignment WAG

procedures to select a subset of RNTBs to store in the off-
line phase of the algorithm. This yields a reduced search
band around T . The first procedure is a novel static search-
ing space constrained to a partial tree T . Let T B, dB

i, j, and

dF
i, j(i.e., di, j) be a backward tree from nM,N to n0,0 and the

backward and forward distances respectively. By combining
both forward node distance and backward distances with a
weighting factor, we only include in our evaluation of RNTB
nodes for which the sum distance exceeds a certain thresh-
old. Let ξ be a threshold for sum distances and î be a row
index satisfying the maximum distance. The reduced search-
ing space is obtained by:

1

2
(dF

î, j +dB
î, j)− (ω1 ·dF

i, j +ω2 ·dB
i, j)) ≤ ξ

w1 +w2 = 1.0
(3)

Remark 1. Assuming that the change in backward distance
is negligible(i.e.,d′F

i, j +d′B
i, j ≈ d′F

i, j +dB
i, j) in column j, let a new

maximum sum of node distance be d̂′FB
i, j . If d′F

i1, j + dB
i1, j ≥

d′F
i2, j +dB

i2, j , then d̂′FB
i, j − (d′F

i2, j +dB
i2, j) ≤ d̂′FB

i, j − (d′F
i1, j +dB

i1, j).

The parameters in Eq.3 are obtained empirically while
a trade-off between performance and correctness is consid-
ered. In contrast to the classical heuristic approach which
is based on the evaluation of a distance at the present node
and estimated distance from the node to the goal node in the
sense, the backward distance information is used in our off-
line analysis. For instance, suppose that there is a consecu-
tive matches from n3,3 to n4,4 in Fig.2. Then a decision of the
searching space based on 3 increases the probability that a T ′
contains n3,2 which is followed by the matching spots.

The second procedure keeps segments that constitute
highly matching substrings. It is obvious that the high score
pairs(HSPs) must be tolerant of perturbation. The tolerance
evaluation test is performed on these segments only.

Our reduced RNTBs selection approach has two bene-
fits. First, we can alleviate the expensive tolerance evalua-
tion while maximizing the chance that the relative perturba-
tions will be in the set of the RNTBs that we kept since many

branches likely share the upstream HSP node. Second, the
total number of tolerance evaluations can be reduced signifi-
cantly. This can be also validated by the following remark.

Remark 2. If a new alignment O′ exists within a subtree Ṫ
that is confined to the searching band in T , the delta propa-
gation does not deform the correct O′.

Proof. When a non-tree edge è+ ∈ Ṫ replaces a RNTB as-
signment at a column j of an è− /∈ Ṫ having a shorter cost,
∆(è+) is still the smallest cost in Ṫ since a new Ṫ ′ generated
by Φ(u:v, j) of ∆(è+) and the delta propagation is equivalent

to that of ∆(è−) at least within the searching band, Ṫ .

3.2.2 Tolerance Evaluation For The Last Perturbation

Once the perturbation of each node satisfies its relative toler-
ance bound in a column, the alignment process can skip over
all unperturbed columns before the next perturbation. Oth-
erwise, the evaluation will be accomplished in the next se-
lected column assuming that there was a perturbation in that
column. Thus, multiple perturbations can be handled gener-
ally by this fashion. More interestingly, there is a reason that
we associate to the nodes of a selected column their back-
ward distance BF

i, j. If there is no more perturbation remaining

during this rematching procedure, we can use Hirschberg’s
algorithm[5] for the final tolerance evaluation with lower
complexity O(M) rather than O(M2).

Remark 3. If there is no more perturbation right after a col-
umn j that a DP reaches while updating T ′ and if a node
nr, j that satisfies argmaxr {d′F

r, j +dB
r, j} is equal to the previ-

ous optimal node, ni, j at j, the rest of new alignment is same
as the previous one.

This observation follows from the fact that there is no
perturbation in the backward direction. Since d′B

r, j is equal

to dB
r, j, only δ (di, j) is added to the destination node distance

dN,M in O(N) time. When either single or a burst type of
perturbation occur, this evaluation is valuable if we seek high
performance since we do not take care of the rest of T ′ any
more.

The pseudo code of algorithm 1 summarizes our off-line
computation of RNTB assignment for a selected resource.
Once the perturbations is identified in an updated sequence,
the on-line algorithm 2 performs a matching process initiated
from a HSP column closest to the first updated column.

Algorithm 1 off-line dynamic sensitivity analysis

1: perform NW DP of Eq.(2)
2: the HSP column selection on the optimal alignment
3: obtain the searching band by Eq.(3); Ṫ
4: Q← sort(∆(è+),ASCEND), where è+ ∈ Ṫ
5: repeat
6: è ← pop(Q)
7: (n−,n+) ← (p(head(è)), tail(è))
8: repeat
9: if Φ(n−:n+,c)==NULL then

10: Φ(n−:n+,c) ← ∆(è)
11: end if
12: (n−,n+) ← (p(n−), p(n+))
13: until n−! = n+ OR Φ(n−:n+,c)!=NULL

14: until Q != EMPTY
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Algorithm 2 on-line reusable alignment

1: perform resource mapping procedure
2: while c ≤ length(s′2) do
3: perform NW DP of Eq.(2)
4: if c==HSP column then
5: if perturbation==0 then
6: perform argmax comparison of Remark 3.
7: else
8: δr ← d′

r,c −dr,c for srchBandRow(r,c) ∀r
9: tolerant ← true, u ← srchBandRow(1,c)

10: while tolerant AND u ≤srchBandRow(end,c) do
11: if δu,v: j is NOT in Φ(u:v, j)∃v then

12: tolerant ← false
13: end if
14: u ← u+1
15: end while
16: if tolerant then
17: delta propagation
18: else
19: c ← c+1
20: end if
21: end if
22: else
23: c ← c+1
24: end if
25: end while

4. EXPERIMENTAL RESULTS

There are two main computation phases in the proposed
reusable alignment procedure. First, a recursion of the DP
module(3:3) would be performed for columns of perturba-
tions source or columns that exceed the node tolerances. The
computational time on this module is called “DP time”. Sec-
ond, the routines(5:21) include a a module for detecting HSP
and the tolerance evaluation and delta propagation. Simi-
larly, the computational time on this module is called “con-
trol time”.

In our experiment, we collect a pair of amino acid se-
quences with similarity that is greater than 20%. Those sam-
ples include a protein such as leghemoglobin, beta globin,
serine protease, native elastase, hemoglobin beta embroynic
etc. No more than 5% HSP samples are stored in the off-line
computation when we select window size and the number of
hits as 5 and 3 respectively. Also, we confine our search-
ing band to yield 95% correctness of realignment under the
condition that a maximum of 4 perturbations are allowed to
occur.

We study the effect of three variables on the performance
of the algorithm in table 4:(1)the number of perturbations
in a sequence, (2)the sequence length, and (3)the burstiness
of the perturbations. It is obvious that more perturbations
require more time to rematch since more columns must be
analyzed in the updated sequence to detect the valid previ-
ous optimality. When the proposed algorithm handles a large
number of perturbation, performance deteriorates since fre-
quent visits to the control module consume enormous com-
putation. Next, the proposed scheme outperforms NW more
with longer sequences since it performs big jumps over the
unperturbed parts of the sequences (e.g., it consumes only
4.6% of the calculations used by NW in the third experiment
corresponding to dependency II). Finally, we observe that a
new sequence with a burst type of perturbation uses less com-
putational time than the case where perturbations are scat-

dep. pert# length local NW† Proposed† LOCUS

I

1 210 1.0 72.92 8.00 1SGC : 3EST
2 210 1.0 73.72 10.04
4 210 1.0 72.12 14.84

II

2 146 1.0 35.64 6.40 P27199:NP 000509
2 318 1.0 162.24 14.04 CAA31435:NP 680093
2 544 1.0 591.64 27.32 YP 273777:YP 244613

III

3 120 0.2 34.84 3.60 NP 001004376
3 120 0.4 36.44 4.80 : NP 001015058
3 120 0.8 36.04 5.60

Table 1: experimental result for 3 dependencies(†time(ms))

tered out. This observation is consistent with the result from
the tolerance evaluation for the last perturbation.

5. DISCUSSION

Our innovative sensitivity analysis has been extended to a
general DP including any type of perturbation in practice.
We capture a minimum information to perform an efficient
realignment for either variant or slightly updated sequences.
In this work, we observe that the efficient data structure
and a number of calls of the control module holds the key
to a higher performance. In particular, we notice that the
higher similarity alignment increases a probability that per-

turbations is within a set of their RNTB3. In our future
work, we plan to apply a contour derived by suboptimal
path into our static searching space such that the probability
is maximized. It would be interesting to compare the pro-

posed approach with any standard pruning algorithm4. The
preliminary implementation of our approach is available at
www.ece.umn.edu/users/hongcj92/.
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