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ABSTRACT

This paper presents an efficient lossless DNA 
compression algorithm, DNA-Residual, that significantly 
decreases the average bit-rate required to losslessly code 
correlated DNA sequences. The algorithm can be divided 
into two parts: modeling and coding. The modeling part 
consists of mapping the DNA bases into a binary 
representation and, then, a forward linear prediction filter 
is used to predict the current input from the previous 
ones. The prediction error is then transformed into a 
binary error sequence that is coded using an adaptive 
binary arithmetic coder. Compared to state-of-the-art 
compressors using benchmark DNA sequences, the 
proposed algorithm reveals a significantly higher 
compression ratio whenever correlation between bases is 
high.  

1. INTRODUCTION 

Recently, and with the completion of the human genome, 
compression of DNA sequences gained considerable 
research interest. DNA sequences can contain millions of 
nucleotides, thus, the need arises for an efficient lossless 
DNA compression algorithm. Although the storage media 
increased in size considerably, there is always a need for 
compression for lowering the cost of storing and 
maintaining large databases. In addition, DNA sequences 
are typically shared among different servers and 
information is retrieved using the Internet and other 
bandwith-limited transmission media. This necessitates 
the use of compression in order to reduce the needed 
transmission time and bandwidth.   

DNA sequences contain only four bases {A, C, T, 
G}, thus, at most 2 bits are needed to represent each base. 
However, the standard text compression algorithms 
cannot compress the base below 2 bits. In fact, the size of 
the files encoded with standard compression algorithms 
yield a compression higher than 2 bits/base [1]. Most of 
the general purpose compressors are tailored towards text 
compression focusing on the redundancies of exact 

replicas and on the predictability of the current symbol 
based on the previous context.  
It can be shown that the DNA sequences are not random 
sequences [2], but sequences where approximate repeats 
(repeats having one or several mutated bases) and 
complementary palindromes (reversed repeats where 
nucleotides are replaced by their complementary bases) 
can be detected. Based on these characteristics, several 
algorithms [1, 3-10] have been proposed resulting in a 
higher compression ratio than standard algorithms. 
Though these proposed algorithms try to take advantage 
of DNA sequence characteristics, their compression ratio 
is not satisfactory giving, on average, a compression ratio 
around 1.6 bits/base. Since the DNA sequence is a 
discrete one, information coding and digital signal 
techniques can be applied. The proposed algorithm, 
DNA-Residual, uses forward linear prediction and 
entropy coding to encode the DNA residual or prediction 
error.
This paper is organized as follows. Section 2 presents an 
overview of available algorithms for DNA sequence 
compression. The proposed algorithm based on forward 
linear prediction is presented in Section 3.  Section 4 
compares the performance of the state-of-the-art existing 
DNA compression algorithms with the proposed one.  

2. EXISTING DNA COMPRESSION ALGORITHMS 

This section provides an overview of existing popular 
DNA compression algorithms.  

BioCompress [2]: is the first algorithm dedicated 
exclusively to DNA sequences.   It uses a Lempel-
Ziv substitution algorithm detecting exact repeats and 
complementary palindromes. Palindromes matches 
are as frequent as direct matches and redundancy is 
exploited. Later on, an improved version was 
introduced, BioCompress-2 [3], using a context-
based arithmetic coder (order-2) whenever repetition 
is not found. 
GenCompress [4]: introduces the idea of approximate 
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(a) (b) 
Figure 1. Block Diagram of the proposed DNA-Residual algorithm: (a) Encoder, (b) Decoder. 

matches where it searches for approximate repeats 
with replacement operations using the Hamming 
distance. The algorithm searches for approximate 
repeats or approximate reverse complements, and 
encodes these as length, position and differences 
using Lempel-Ziv. If an approximate repeat or an 
approximate reverse complement contains many 
differences, this algorithm does not provide gain in 
the encoding. In order to increase the coding gain, 
GenCompress uses a second-order arithmetic coder. 
An improved version, GenCompress–2 [5], uses an 
edition operation for the replacement (deletion, 
insertion and substitution). 
DNACompress [6]: employs the Lempe-Ziv scheme 
for exact and approximate repeats. The repeats are 
detected using a search algorithm, PatternHunter, 
employing non consecutive symbols as seeds. Non-
repeat regions are encoded using a context-based 
arithmetic coder.  
DNAPack [7]: searches for approximate matches 
similar to the approach adopted in the preceding 
algorithms. The difference lies in the detection of the 
approximate repeats using dynamic programming, 
increasing thus the probability of detecting the 
longest approximate matching pattern rather than, for 
example, detecting the first occurring one. 
CTW-LZ [8]: is a combination of the context-tree 
weighting method (CTW) and the Lempel-Ziv 
scheme. The long exact or approximate matches are 
encoded using CTW, while short sequences are 
encoded using Lempel-Ziv. Searching for 
approximate repeats or approximate reverse 
complements, is performed using dynamic 
programming.  
GeNML [9]: takes a different approach by using a 
combination of encoding schemes. The DNA 
sequence is divided into fixed length blocks.  The 
first scheme uses a reference to a previously encoded 

segment for conditionally encoding the current block 
using a Normalized Maximum Likelihood (NML) 
model. A discrete regression model is obtained by 
detecting hidden regularities which are considered as 
the approximate matches. The second scheme uses a 
context-based arithmetic coder for non-regular block. 

Other DNA compression algorithms also exist but are less 
popular due to their high complexity or low compression 
ratio [10]. It is worth noting that since the appearance of 
the first dedicated DNA compressor by Grumbach and 
Tahi [1] till the latest proposed one by Korodi and Tabus 
[9], the reduction in bit-rate is less than 0.02 bits/base. 

3. PROPOSED ALGORITHM 

A block diagram of the proposed coding algorithm is 
shown in Fig. 1. The encoding process (Fig. 1(a)) can be 
summarized as follows. To apply DSP techniques to 
DNA sequences, each DNA base is first assigned a 
numerical value. The four bases A, G, C, and T are 
mapped to 00, 01, 10, and 11, respectively, maintaining, 
thus, the base characteristics of having {A,T} and {G,C} 
as complements [2]. Note that the resulting binary 
sequence ‘b’ is regarded as stationary (or at least, quasi-
stationary), which is the underlying assumption in the 
prediction and compression process.  
The linear prediction filtering attempts to remove the 
redundancy from the DNA bit stream ‘b’. Note that the 
resulting prediction filter output ‘q’ is a multi-bit value 
and is thresholded, with respect to zero, to obtain a binary 
sequence ‘z’.  As indicated in Fig. 1(a), the error signal 
‘e’ is calculated by an exclusive-or (XOR) operation 
between the original DNA bit-stream, ‘b’, and the 
thresholded filter output,‘z’. If the prediction is successful 
(so as to create as many zeroes in ‘e’ as possible), the 
probability of false prediction P(e = 1) will be low, 
enabling significant data reductions by entropy encoding. 
The prediction error ‘e’ is encoded using adaptive binary 
arithmetic coding.  Note that along the encoded bits from 
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the arithmetic coder, the coefficients of the prediction 
filter need also to be transmitted for each encoded input 
sequence. The decoder (Fig. 1(b)) performs the inverse 
operations of the encoder, recovering the binary sequence 
‘b’ and reverse mapping the bits to DNA bases. More 
details about the linear prediction filter and the adaptive 
arithmetic coding  blocks are provided below. 

3.1. Linear Prediction Filter 

Correlation functions have been widely used to study the 
statistical properties of DNA sequences [2, 11, 12]. 
Linear prediction and autocorrelation-based techniques 
were used to extract a feature vector from different 
regions of the gene identifying coding and non coding 
regions [2]. In addition, the prediction error was used as a 
similarity measure between different genes. For example, 
the coefficients for the prediction filter of gene 1 were 
obtained, and an analysis was performed using the same 
model coefficients that are obtained for gene 1, but 
applied to the other genes. The variance of the residual 
error was used for similarity check; the smaller the 
variance, the higher the similarity.  These ideas are 
borrowed from speech processing algorithms where the 
residual error is used in speech to differentiate between 
voiced and unvoiced frames. Recently, linear prediction 
was used by Philips in the Super Audio CD Standard to 
losslessly compress oversampled speech or audio     
signals [13]. A similar idea is adopted here to compress 
DNA sequences.  Comparing the audio signal to DNA 
sequences, the correlation of the oversampled audio 
signal is much higher giving a better prediction and thus, 
a higher compression ratio. But due to the continuous 
increase in the deciphered genes where billions of bases 
need to be stored, any reduction in bit-rate, as compared 
to the existing DNA compression algorithms, is 
significant.  
Though there is no causality constraint on DNA 
sequences, only forward linear prediction filters will be 
used (depending only on the previous input samples), 
since the start/stop codons and the transcription of the 
nucleotide triplets implicitly give directionality to the 
nucleotide sequences in the genes. The transfer function 
of the forward linear prediction filter is given by: 
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where a1, a2, . . . , ap are the linear prediction coefficients. 
The FIR prediction filter coefficients can be obtained 
using standard methods. The AR Yule-Walker and Burg 
algorithms based on the autocorrelation matrix are widely 
used to compute the filter coefficients. The involved 
autocorrelation matrix values are typically calculated 
using the biased estimate version given by [14]: 
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where ‘b’ is the input, ‘m’ is the distance or shift between 
the sequence, and ‘N’ the total number of considered 
samples. Note for large sequences, framing may be used 
to reduce computation complexity.  
In our case, a prediction filter of order P = 10 was found 
to provide a good performance in modeling the 
correlation of the DNA sequences. Adaptive linear 
prediction is used by computing the optimal prediction 
coefficients for each input DNA sequence to be coded. 
For each DNA sequence, the computed optimal 
coefficients are sent to the decoder as part of the bit-
stream by using 16 bits to represent each coefficient.

3.2. Adaptive Arithmetic Coding 

It is well known, from information theory, that a source 
with entropy H requires, on average, only H bits to 
represent each of its symbols losslessly. The entropy is 
the theoretical limit for any compression algorithm. For a 
binary source, the first-order entropy can be expressed as: 

121020 loglog ppppH (3)

where p0 and p1 are the probabilities of binary symbols ‘0 
and ‘1’, respectively.  From (3), we can infer that as the 
probability of one of the symbols increases with respect 
to the other one, the entropy will decrease. So, a well-
designed prediction filter (Section 3.1) should result in a 
large number of zeros and a small number of ones in the 
binary error sequence ‘e’. Consequently, this would result 
in a low-entropy error sequence that can be efficiently 
compressed using entropy coding schemes.  In our case, 
adaptive binary arithmetic coding [15] is adopted for 
coding the resulting binary error sequence ‘e’.  

4. SIMULATION RESULTS 

In order to test the performance of the proposed lossless 
DNA compression algorithm, the standard benchmark 
data used in [3-10] was coded using the proposed 
algorithm. This standard benchmark includes the 
complete genomes of two mitochondria: MPOMTCG, 
PANMTPACGA (also called MIPACGA); two 
chloroplasts: CHNTXX and CHMPXX (also called 
MTPACG); five sequences from humans: HUMGHCSA, 
HUMHBB, HUMHDABCD, HUMDYSTROP, 
HUMHPRTB; and finally the complete genome from two 
viruses: VACCG and HEHCMVCG (also called 
HS5HCMVCG).  
Table 1 presents the obtained coding results using the 
proposed DNA-Residual algorithm. For comparison, 
Table 1 also shows the coding results obtained by using 
existing state-of-the-art lossless compression schemes. 
Note that the compression ratio (number of bits/base), for  
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Table 1. Lossless coding results (bits/base) using the proposed DNA Residual algorithm and comparison with existing  
lossless DNA compression algorithms.

Sequence Size 
(bytes) Bio2 [3] Gen2 [5] 

DNA
Compress

[6]
DNAPack [7] CTW-

LZ [8] 
GeNML

[9]

Proposed
DNA

Residual
CHMPXX 121024 1.68 1.67 1.67 1.66 1.67 1.66 0.01

CHNTXX 155844 1.62 1.61 1.61 1.61 1.61 1.61 0.69

HEHCMVCG 229354 1.85 1.85 1.85 1.83 1.84 1.84 2.03 

HUMDYSTROP 38770 1.93 1.92 1.91 1.03 1.92 1.91 0.06

HUMGHCSA 66495 1.31 1.1 1.03 1.91 1.1 1.01 2.14

HUMHDABCD 58864 1.88 1.82 1.8 1.74 1.82 1.71 2.13

HUMHPRTB 56737 1.91 1.85 1.82 1.78 1.84 1.76 1.69

MPOMTCG 186608 1.94 1.91 1.89 1.74 1.9 1.88 1.45

MTPACG 100314 1.88 1.86 1.86 1.86 1.86 1.84 0.01

VACCG 191737 1.76 1.76 1.76 1.76 1.76 1.76 0.10

AVERAGE - 1.7706 1.7350 1.7200 1.6920 1.7320 1.6980 1.031

the proposed algorithm, is calculated by summing the 
total number of  bits (encoded bits + filter coefficients) 
and dividing by the total number of bases in the gene. 
From Table 1, it can be seen that, on average, the DNA-
Residual is resulting in a significantly lower average bit-
rate (1.031 bit/base) as compared to the existing lossless 
DNA compression schemes (lowest average bit-rate is 
1.698/base using GeNML [9]). The relation between the 
bases is almost linear for genes ‘CHMPXX’ and 
‘MTPACG’, resulting in a very high compression ratio 
(very low bit-rate) with the proposed scheme. On the 
other hand, for some genes such as ‘HEHCMVCG’, the 
results are not satisfactory implying that the bases are 
decorrelated. To overcome this problem, a combination of 
GeNML and DNA-Residual may be used. For example, 
for the high-entropy, less correlated sequences, GeNML 
is used, while for correlated sequences, the proposed 
DNA-Residual scheme is selected. Finally, more efficient 
context-based adaptive binary arithmetic encoders will be 
investigated to approach the calculated entropy for the 
less correlated sequences. 
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