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ABSTRACT 

 
Uncovering genetic pathways is equivalent to finding clusters of 

genes with expression levels that evolve coherently under subsets of 

conditions. This can be done by applying a biclustering procedure to 

gene expression data. Given a microarray data set with M genes and 

N conditions, we define a bicluster with coherent evolution as a 

subset of genes with expression levels that are non-decreasing as a 

function of a particular ordered subset of conditions. We propose a 

new biclustering procedure that identifies all biclusters with a 

specified number of K conditions in parallel with O(MK) complexity. 

Unlike almost all prior biclustering techniques, the proposed 

approach is guaranteed to find all biclusters with a specified 

minimum numbers of genes and conditions in the data set. All of the 

biclusters it identifies have no imperfection, i.e., the evolutions of the 

genes in each bicluster will be coherent across all conditions in the 

bicluster. Furthermore, the complexity of the proposed approach is 

lower than that of prior approaches. We also discuss the biological 

significance of the biclusters computed by the algorithm for a set of 

yeast gene microarray data. 

 

1. INTRODUCTION 

 

One of the major goals of gene expression data analysis is to 

uncover genetic pathways, i.e., chains of genetic interactions. 

For example, a researcher may be interested in identifying the 

genes that contribute to a disease. This task is difficult because 

subgroups of genes display similar activation patterns only under 

certain experimental conditions. Genes that are co-regulated or 

co-expressed under a subset of conditions will behave differently 

under other conditions. Finding genetic pathways therefore could 

be aided by identifying clusters of genes that are co-expressed 

under subsets of conditions as opposed to all conditions. A high 

degree of correlation between the activity levels of subsets of 

genes under subsets of conditions does not of course necessarily 

imply causality relations. Further biological analysis would be 

required to find actual genetic pathways. 

Gene expression data is typically arranged in an M by N data 

matrix A=[amn], with rows corresponding to genes and columns 

to experimental conditions. The (m, n)th entry of the gene 

expression matrix represents the expression level of the gene 

corresponding to row m under the specific condition 

corresponding to column n. By simultaneously clustering the 

rows and columns of the gene expression matrix, one can 

identify candidate subsets of conditions that may be associated 

with cellular processes that exhibit themselves only or subsets of 

genes that potentially play a role in a given biological process. 

Biological analysis and experimentation could then confirm the 

biological significance of the candidate subsets. 

Cheng and Church were the first to apply biclustering to DNA 

microarray data analysis [1]. They introduced the term 

biclustering to denote simultaneous row-column clustering of 

gene expression data. Many other approaches were proposed 

thereafter in the literature, e.g., [2]-[8]. The reader is referred to 

[9] for an extensive development and comparison of prior 

approaches. 

Most of these previous techniques search for one or two types of 

biclusters among four that have been identified in the literature 

[9]: biclusters with constant values, biclusters with constant 

values on rows or columns, biclusters with coherent values, and 

biclusters with coherent evolution. Most previous techniques are 

also greedy and will miss meaningful biclusters. Many of these 

pioneering approaches used a cost function to define biclusters. 

In many cases, the cost function will measure the square 

deviation from the sum of the mean value of expression levels in 

the entire bicluster, and the mean values of expression levels 

along each row and column in the bicluster.  

Our objective here is to develop a biclustering algorithm that is 

able to discover all biclusters with coherent evolutions in a given 

data set in a timely manner. The proposed biclustering algorithm 

approach is different from previous ones in several ways. First, 

the proposed approach will identify all valid perfect biclusters 

with coherent evolutions and any given number of conditions. 

Unlike our prior work [8] or those of [1]-[6], none of the 

biclusters it identifies will have imperfections, i.e., one or more 

gene that does not behave coherently with the remaining genes 

for one or more condition. Secondly, the proposed approach uses 

basic linear algebra and arithmetic tools and avoids the need for 

heuristic cost functions of prior approaches that can miss some 

pertinent biclusters.  Third, the complexity of our approach is 

lower than that of prior biclustering techniques, including that of 

our prior approach [7].  

 

2. PROBLEM STATEMENT AND DISCUSSION  

 

As mentioned earlier, our goal here is to identify all biclusters 

of genes that behave coherently across a number of conditions. 

Biclusters with coherent evolutions identify groups of genes that 

are co-regulated up or down coherently across a subset of 

conditions with no reference to their actual expression levels. In 

this paper, we shall define a bicluster with coherent evolution as 

a subset of genes that have expression levels that are non-

decreasing as a function of an ordered subset of conditions. Note 

that, according to our definition, another subset of genes with 

expression levels that are decreasing as a function of the ordered 

subset of conditions in a bicluster that satisfies our definition 

will constitute a different bicluster. This follows from the fact 

that their expression levels will be non-decreasing as a function 

of the reverse of the given ordered subset of conditions. If 

desired, the two biclusters can be merged in a post-processing 

step to identify all genes that are co-regulated up or down 

coherently across the subset of conditions.  
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To avoid the identification of possibly trivial biclusters, we 

allow the user to pre-specify the minimum size of a valid 

bicluster, that is the minimum number Gmin of genes and 

conditions Kmin that appear in a given bicluster. 

The reader will immediately notice that traditional clustering 

techniques cannot be used to solve the problem of identifying 

biclusters with coherent evolutions. Straightforward application 

of traditional clustering techniques would require that we look 

for meaningful patterns on arbitrary subsets of conditions 

amongst several conditions and a large number of genes. This is 

difficult and computationally very complex as illustrated in Figs 

1 and 2. These two figures refer to a subset of results of the 

analysis of 2882 yeast genes under 17 conditions using the 

proposed technique. Fig. 1 displays the expression levels of a 

subset of 9 genes under all conditions. It is very difficult to 

identify any coherent evolution from Fig. 1. Yet, the proposed 

approach is able to identify a subset of 4 conditions under which 

the gene expression levels evolve coherently, as shown in Fig. 2. 

We will have more to say about the data set and the results we 

obtained in Section 4. 

The second challenge that we encounter when trying to apply 

traditional clustering techniques to the problem of identifying 

biclusters with coherent evolutions is that, by definition, we are 

not interested in the actual expression levels of the genes. We are 

solely interested in how they are co-regulated across subsets of 

conditions. This implies that traditional distance measures 

cannot be used to identify patterns or clusters. Clearly, the 

expression levels shown in Fig. 2 are not close in a Euclidean, 

Manhattan or other distance measure. 

 

3. THE ALGORITHM 

 

Our proposed algorithm consists of two steps: a pre-

processing step followed by a bicluster identification step.  

The pre-processing step in particular, starts with a data 

conditioning routine that strictly speaking is not part of the 

proposed algorithm. Its main purpose is to deal with the noise in 

the DNA microarray data as well as missing values. 

The actual bicluster identification step consists of two sub-

steps. For all valid numbers K of conditions, where K ≥ K min, 

and K min is the pre-specified minimum number of conditions in a 

valid bicluster, the procedure will enumerate all combinations of 

K conditions from the given N conditions in the DNA microarray 

data that could potentially appear in a valid bicluster. For each 

subset of K conditions, it then uses a row sort procedure that 

allows us to focus on the coherent evolutions of gene expression 

levels, rather than the raw or processed expression levels. The 

output of this step is a matrix that contains the rank of each of 

the K conditions for each row (gene) when the expression levels 

of each gene are ordered in a non-decreasing manner. We shall 

refer to this matrix as the condition rank matrix and will use it as 

the input to the main bicluster identification routine. Finally, the 

main bicluster identification routine identifies all valid coherent 

evolution patterns involving all genes and a set of K conditions 

simultaneously through a fast row sorting procedure. Note that 

this allows the algorithm to identify all the possible valid 

biclusters without an exhaustive enumeration of all possible K! 

permutations of the K conditions. The procedure will also yield 

biclusters of genes where a subset of genes are coherently up-

regulated and another subset coherently down-regulated across 

the K conditions.  

a. Data pre-processing 

Many techniques to recover missing expression level values 

have been developed in the literature, e.g., [10]. Obviously, the 

choice of technique for dealing with missing values will impact 

the output of the bicluster identification approach. In our 

experiments, we have typically removed any gene from 

consideration when examining subsets of conditions for which 

the gene expression level is missing.  

Several techniques have also been proposed in the literature to 

deal with noise in DNA microarray data, e.g. [11]-[14]. In our 

work, we have relied on two approaches based on a quantization 

of the gene expression values. We have used approaches similar 

to those of [15] wherein a clustering technique, such as K-means 

or fuzzy c-means, is used to cluster the expression levels across 

the entire DNA microarray data set, or on a gene by gene basis. 

Each gene expression level is then replaced by the codeword 

corresponding to the cluster to which it belongs prior to analysis 

with the bicluster identification procedure. 

b. Bicluster identification 

Let us now discuss the three main sub-steps of the 

biclustering procedure. 

 

(i). Enumeration of subsets of conditions 

Suppose that the user determines that all valid biclusters must 

have Kmin or more conditions. Let K be the possible number of 

conditions in a valid bicluster, where Kmin≤ K ≤  N. The 

algorithm proceeds in one or two ways to enumerate all possible 

subsets of conditions that may appear in a valid bicluster. 

The first approach consists of using any algorithm, such as the 

one in [16] or [17], to enumerate all possible C(N,K),  

0 2 4 6 8 10 1 2 1 4 1 6 18
0

5 0

1 00

1 50

2 00

2 50

3 00

3 50

c on d i tio n

e
x
p

re
ss

io
n

 l
e
v

el

Fig. 1.  Expression levels of a subset of 9 genes across all  
conditions in the yeast microarray data. Different lines 

 correspond to the expression levels of different genes. 
 

 
Fig. 2.  Expression levels of the subset of 9 genes in Fig. 1 

across 4 conditions: {1, 2, 6, 7}, in the yeast microarray data.  

Different lines correspond to the expression levels of different genes. 
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combinations of K conditions from the given N conditions in the 

DNA microarray data, where C(N,K)=N!/((N-K)! K!), regardless 

of their likelihood of appearing in a valid bicluster. 

The main drawback of this enumeration approach is its 

potentially high complexity. For example, with the yeast gene 

expression data that we discuss later in the paper, N=17. For 

K=8, the algorithm will generate 24,310 subsets of 8 conditions 

to be tested. A preferred approach consists of generating the 

subsets recursively. Specifically, we note that a subset of 8 

conditions that leads to valid biclusters will include 2 subsets of 

4 conditions each. Therefore, we can recursively form subsets of 

2m conditions by concatenating two non overlapping subsets of 

2m-1 conditions that actually generated valid biclusters.  

Subsets with K conditions where K is not a power of 2, can be 

similarly computed by merging several subsets of  

2 ik
conditions that actually generated valid bicluster, where 1≤ i 

≤ I and  K equals the sum of 2 ik
. In particular, the values of the 

powers ki can be computed by expressing K in binary form. 

 

(ii). Data sorting 

For each given subset of K conditions, the algorithm proceeds 

to sort the rows of a submatrix of the gene expression matrix A 

defined above. Let vector n = [n1 n2  
… nK] denote a row vector 

with entries ni equal to the column positions of the K conditions 

in the given subset of K conditions. The algorithm proceeds to 

sort the entries in each row of A(:,n), where “:” stands for all 

rows, in non-decreasing order of gene expression level. For each 

row (gene), the algorithm sorts the expression levels of the gene, 

from smallest to largest, across the K conditions corresponding 

to the columns indexed by n. The indices of the sorted list are 

then stored in the corresponding row of the condition rank 

matrix B. In particular, let y be the sorted list corresponding to 

x= [x(1) x(2) …x(K)] the lth row of A(:,n),  i.e., x=A(l,n). Further, 

let m =[m1 m2 
…mK] be the vector of indices of the sorted list y. 

Then, x(m) = y  and B(l,n) = m, where x(m)=[x(m1) x(m2) 
…x(mK)]. Thus, a {3} in cell (4,5) of the gene condition rank 

matrix B indicates that the expression level for gene 4 under the 

condition corresponding to n3 is  the 5th smallest (possibly 

quantized) expression level for gene 4 across all conditions 

corresponding to n.  

 

        (iii). Bicluster identification 

Note that the rows of the condition rank matrix B exhibit all 

possible ordered patterns of the K conditions across all rows. 

Hence, to identify all possible ordered sets of conditions that are 

exhibited by rows of A, we need to find all distinct patterns in B. 

This can be done by sorting the rows of matrix B and identifying 

“edges” between patterns. 

The algorithm therefore begins by sorting the rows of B 

according to the entries along its columns, starting with the first 

column and proceeding to the last. The output of this row sorting 

procedure is a matrix C in which rows are grouped by similarity.  

Note that the algorithm also needs to keep track of the original 

index of the sorted rows to correctly identify the genes in any 

given bicluster. Let mindex be the column vector indicating the 

original position of all rows in C. The index in the kth row of 

mindex indicates the position of the kth row of C in B. 

To identify the unique patterns in B, we apply a simple 

differencing procedure to the columns of C. specifically; we 

subtract from each row the values in the preceding row, column 

by column. A non-zero output in any row indicates the position 

of a distinct pattern. Hence, we can identify the row indices of 

all distinct patterns by looking for rows with any non-zero 

element. Let dindex be the column vector indicating the row 

position of the unique patterns in C. The difference between two 

consecutive entries in dindex gives us the number of genes that 

display a given pattern. The exact identity of these genes is 

found by picking the rows of mindex with indices starting at an 

entry of dindex and proceeding to the next consecutive entry 

minus one.  

Denote by [m1i m2i  
… mMi] the list of genes that exhibit the ith  

unique pattern in matrix C. The pair ([m1i m2i  
… mMi], [n1 n2  

… 

nK])  is a valid bicluster if G ≥ Gmin.  Hence, the algorithm 

discards any unique ordering of the K conditions that is not 

displayed by at least the desired minimum number of genes, 

Gmin.  
 

The complexity of the proposed approach can be shown to be 

O(MK), which is lower than that of prior techniques, even 

though most prior approaches are not guaranteed to find all valid 

biclusters with coherent evolutions. For example, the approaches 

of [1] and [2] have complexities of O(MN(M+N)I) and O( 

(M+N)2I)  respectively to identify I biclusters.  

 

4. RESULTS AND THEIR BIOLOGICAL SIGNIFICANCE 
 

We conclude the paper by analyzing the yeast gene 

microarray data that can be found at [18]. The data contains the 

expression levels of 2884 genes under 17 conditions. We 

eliminated two genes from the discussion below because they 

had missing data.  We also eliminated three other genes from the 

original data set.  These genes contained all zeros as expression 

levels.  Obviously any way you order the conditions, the 

expression levels of these genes stay constant. These genes will 

therefore be picked up in every bicluster because as mentioned 

above, biclusters are seeking genes whose expression level either 

stay constant or increase across an ordered subgroup of 

conditions.  These 3 genes are actually known to be unclassified. 

The partial analysis results that we present here for the yeast 

data were obtained by first quantizing the expression data using 

a dictionary with 50 codewords determined by the k-means 

algorithm. We sought all biclusters with 3 or more genes and 11 

to 17 conditions. Because of the large number of biclusters 

found, we will present here a few illustrative results that will 

help the reader grasp the magnitude of the problem and the 

nature of the results produced by the algorithm. 

A preliminary assessment of the biological 

significance of the biclusters was performed by using functional 

categories from the Comprehensive Yeast Genome Database 

[19]-[20].  The database categorizes yeast genes into fine 

groupings. The results that we present here however utilize a 

level of classification that divides the yeast genome into 19 

groups based on the function of the protein the specified gene 

codes.  The annotation system the CYGD utilizes is called 

FunCat, for functional classification catalog.  More information 

on this can be found in [21].  Because of the large number of 

biclusters that we obtained, we discuss here the biclusters that 

we identified with 12 to 16 conditions. The analysis of these 

biclusters is representative of what we have seen so far. It also 

illustrates the complexity of the additional investigations that 

must be performed on the biclusters once they have been 

identified. Table 1 provides a preliminary biological significance 
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analysis of the biclusters with 12 or more conditions. The first 

row of Table 1 lists how many biclusters were found.  Rows two 

through five show how many biclusters belong to one of 4 

mutually exclusive categories.  The second row shows how 

many of those biclusters contained genes that were all annotated 

under the same function.  An example of a bicluster in this 

grouping would be three genes that all produce proteins whose 

main purpose is metabolism.  The third row displays how many 

of the biclusters picked up only genes that were unclassified.  

The fourth row lists the number of biclusters that contained 

genes annotated to the same function as well as unclassified 

genes.  The final row just shows how many biclusters detected 

genes that are functionally unclassified. 

Note that the biclusters picked up a low number of completely 

functionally annotated sets. This was to be expected since the 

initial data contained many unclassified genes.  Interestingly, the 

algorithm picks up many biclusters that are completely 

comprised of functionally unclassified genes.  Analysis of these 

unknown genes that are co-regulating, and possibly analysis of 

the conditions under which they do so, could lead to further 

classification of the S. cervisiae genome and are the object of 

current biological investigations. 

Another unexpected result was the number of biclusters that 

contained “mixed” data.  The appearance of such biclusters led 

us to pose several questions that we are attempting to answer in 

collaboration with researchers in the biological sciences. The 

genes in these mixed biclusters showed patterns of coherent 

evolution but did not fall necessarily in the same functional 

category.  

 The presence of these biclusters may be indicative of the 

fact that co-regulated genes do not necessarily belong to the 

same functional category. On the other hand, it may indicate that 

these genes have other unknown functions or functions that were 

not captured in the annotation we used. It is also possible that the 

expression levels of certain genes that belong to a given 

functional category affect those of some other genes that belong 

to a different functional category.  

Many of the mixed biclusters are of biological interest 

because they contain genes that either belong to a single 

functional category or are unclassified. Current investigations 

are attempting to determine whether the unclassified genes in 

these biclusters do actually belong to the same functional 

category as the others. With colleagues, we are examining the 

literature to identify the theorized functions of many of the 

unclassified genes that appear in mixed biclusters or biclusters 

with unclassified genes. We are also studying alternative gene 

annotations sources, such as GO-Slim [22], to answer some of 

the questions that we posed here.   
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