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Abstract— We investigate in this paper reverse engineering of
gene regulatory networks from time series microarray data. We
propose a dynamic Bayesian networks (DBNs) modeling and
a full Bayesian learning scheme. The proposed DBN models
directly the continuous expression levels and also is associated
with parameters that indicate the degree as well as the types of
regulations. To learn the network from data, we proposed a re-
versible jump Markov chain Monte Carlo (RJMCMC) algorithm.
The RJMCMC algorithm can provide not only more accurate
inference results than the deterministic alternative algorithms
but also an estimate on the a posteriori probabilities (APPs)
of the network topology. The estimated APPs provide useful
information on the confidence of the inferred results and can
also be used for efficient Bayesian data integration. The proposed
approach was tested on yeast cell cycle microarray data and the
results were compared with the KEGG pathway map.

I. INTRODUCTION

We study in this paper signal processing solutions to the
inference of genetic regulatory networks (GRNs) based on
microarray data. A gene regulatory network is a network
representing regulations between genes in a cell. Genes are
nodes in this network and edges are regulatory relationships
between genes. GRNs are the regulatory circuits linking pro-
teins and targets. They are of great importance to elucidate the
system structure, system dynamics, control molecular systems.
Microarray data provide first-hand information on genome
wide molecular interactions and inference of GRNs based on
microarray data is referred to as “reverse engineering” [1].
The solution to this problem is complicated by the enormously
large scale of the unknowns and rather small sample size, not
to mention the inherent experimental defects and many other
factors. Of interest to this paper are the time series microarray
data, which reflect the dynamics of gene regulation in cell
cycles.

In this paper, we apply dynamic Bayesian networks (DBNs)
to model the time series microarray experiment. The DBN
used in this paper is close to that in [2] [3], which models
the continuous expression level and the degree of regulation.
However, unlike in [2], we target cases where only microarray
data are available for network inference. Consequently, a more
conservative linear regulatory model is adopted as in [3] [4]
since more complex models will greatly reduce the credibility
of the inferred results. Also we are interested in full Bayesian

solutions for learning the networks. That can provide estimates
on the a posteriori probabilities (APPs) of the inferred network
topology. In the context of GRNs, the APPs provide valuable
measurements of confidence on inference. To this end, we
propose a solution based on reversible jump Markov chain
Monte Carlo (RJMCMC) sampling.

The rest of the paper is organized as follows: In section II,
the modeling issues on the time series data with DBNs are
discussed. In section III, tasks on learning the networks are
formulated and the Bayesian solution is derived. In section IV,
the test results of the proposed approach are provided and the
conclusion is drawn.

II. MODELING WITH DYNAMIC BAYESIAN NETWORKS

To model the gene regulation in cell cycles using DBNs,
we assume to have a microarray that measures the expression
levels of G genes at N + 1 evenly sampled consecutive time
instances. We define a random variable matrix Y ∈ RG×(N+1)

with the (i, n)th element yi(n − 1) denoting the expression
level of gene i measured at time n − 1 (See Figure 1).
We further assume that the gene regulation follows a first-
order time-homogeneous Markov process. As a result, we only
consider regulatory relationships between two consecutive
time instance and this relationship remains unchanged over the
course of the microarray experiment. We call the regulating
genes as the parent genes or parents for short.

The structure of the proposed DBNs for modeling the cell
cycle regulations is illustrated in Figure 1. In this DBN, each
node denotes a random variable in Y and all the nodes are
arranged the same way as the corresponding variables in the
matrix Y. An edge between two nodes denotes the regula-
tory relationship between the two associated genes and the
arrow indicates the direction of regulation. Like all Bayesian
networks, DBNs do not allow circles in the graph.

To complete modeling with DBNs, we need to define the
conditional distributions of each child nodes over the graph.
To define the conditional distributions, we let pai(n) denote
a column vector of the expression levels of all the parent
genes that regulate gene i measured at time n. As an example
in Figure 1, pai(n)� = [y1(n), y3(n), yG(n)]. Then, the
conditional distributions of each child nodes over the DBNs
can be expressed as p(yi(n)|pai(n − 1)) ∀i. To determine
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Fig. 1. A DBN modeling of time series expression data.

the expression of the distributions, we assume the expression
level of gene i is the result of linear combination of the
expression levels of the regulating genes at previous sample
time. Mathematically, we have the following expression

yi(n) = w�
i pai(n − 1) + ei(n), n = 1, 2, · · · , N (1)

where wi ∈ R is the weight vector independent of time n and
ei(n) is assumed to be white Gaussian noise with variance σ2.
The weight vector indicates the degree and the types of the
regulation [3]. A gene is up-regulated if the weight is positive
and is down-regulated otherwise. The magnitude (absolute
value) of the weight indicates the degree of regulation. The
noise variable is introduced to account for modeling and
experimental errors. From (1), we obtain that the conditional
distribution is a Gaussian distribution, i.e.,

p(yi(n)|pai(n − 1)) = N (w�
i pai(n − 1), σ2

i ). (2)

In (1), the weight vector wi and the noise variance σ2
i are the

unknown parameters to be determined.

III. LEARNING THE DBN

The task of learning the above DBN consists of two parts:
structure learning and parameter learning. The objective of
structure learning is to determine the topology of the network
or the parents of each gene. Under a given structure, parameter
learning involves the estimation of the weight vector wi and
the noise variance σ2

i for all i. Since the gene expression levels
at any given time are independent and the network is fully
observed, we can learn the parents and the associated model
parameters of each gene separately.

A. Bayesian criterion for structural learning

Let Mi = {M (1)
i , M

(2)
i , · · · , M (K)

i } denote a set of all
possible network topologies for gene i, where each element
represents a topology derived from a possible combination of
the parents of gene i. The problem of structure learning is
to select the topology from Mi that is best supported by the
microarray data.

We can express (1) for a particular topology M
(k)
i in a

matrix-vector form

yi = Pa(k)
i w(k)

i + e(k)
i (3)

where

yi = [yi(1), · · · , yi(N)]�, (4)

Pa(k)
i = [pa(k)

i (0),pa(k)
i (1), · · · ,pa(k)

i (N − 1)]�, (5)

e(k)
i = [e(k)

i (1), e(k)
i (2), · · · , e(k)

i (N)]�, (6)

w(k)
i = [w(k)

i (0), w(k)
i (1), · · · , w(k)

i (N − 1), ]�. (7)

We select the most probable topology M̄i based on the
maximum a posterior criterion (MAP)[5], i.e.,

M̄i = arg max
M

(k)
i

∈Mi

p(M (k)
i |Y)

= arg max
M

(k)
i

∈Mi

p(yi|Pa(k)
i )p(M (k)

i ) (8)

where p(yi|Pa(k)
i ) is the marginal likelihood and p(M (k)

i ) is
the model prior.

The marginal likelihood, p(yi|Pa(k)
i ), is obtained by inte-

grating the unknown parameters from the full likelihood

p(yi|Pa
(k)
i ) =

∫ ∫
p(yi|w(k)

i , σ2
ik, Pa

(k)
i )p(w

(k)
i , σ2

ik |Pa
(k)
i )dw

(k)
i dσ2

ik

(9)

where p(w(k)
i , σ2

ik|Pa(k)
i ) is the parameter prior and we

choose the standard conjugate Gaussian-Inverse-Gamma prior
[6]

p(w(k)
i , σ2

ik|Pa(k)
i ) = N

w
(k)
i

(0, σ2
ikR)IGσ2

ik
(ν0, γ0) (10)

where R−1 = Pa(k)
i

�
Pa(k)

i and γ0 and ν0 take small positive
real values. Based on these conjugate priors, the marginal
likelihood can be obtained as

p(yi|Pa(k)
i ) ∝ |P⊥| 12 (γ0 + y�

i P⊥yi)−
N+ν

2 (11)

where P⊥ = IN −Pa(k)
i (Pa(k)

i

�
Pa(k)

i +R−1)−1Pa(k)
i

�
and

IN is an N × N identity matrix.

B. The topology prior p(M (k)
i )

We assume that each gene has the same a priori probability,
say q, to be a parent gene. Thus, a Geometric distribution on
the prior is expressed as

p(M (k)) = qPk(1 − q)G−Pk . (12)
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where Pk denotes the total number of the parents under M
(k)
i

and G is the gross number of the gene. As a result, the number
of the parents Q follows a Binomial distribution

p(Q = Pk) =
(

G

Pk

)
qPk(1 − q)G−Pk . (13)

Since the mean number of parents Q̄ = Gq, the probability
q can be calculated from the mean as

q = Q̄/G. (14)

Therefore, the choice of q reflects our prior knowledge about
the average number of the parents.

The difficulties of the Bayesian structure learning are in two
folds. First, the sample size N is normally much smaller than
the total number of testing genes G. Secondly, the optimization
and calculation of APPs themselves are NP hard and exact
solutions are infeasible for large G.

C. The proposed solutions

To the end of first difficulty, we impose an upper limit
Qmax on the number of parents and restrict Qmax < N .
This constraint essentially forces us to search only among
the topologies whose regulatory models are over-determined.
It also serves to reduce the size of the search space and
helps alleviate the second difficulty. To search the network
topology from data, We proposed a reversible jump Markov
chain Monte Carlo (RJMCMC) to approximate the MAP
solution and the APPs. RJMCMC, proposed by Green in [7],
is an MCMC algorithm for sampling from a joint topology-
parameter space. In our case, the objective of the RJMCMC
is to generate random samples from the APPs p(M (k)|Y).
Then, the MAP solution can be approximated with the most-
frequently-occurred samples. These samples can be also used
to produce an approximate to the desired APPs.

The algorithm of the proposed RJMCMC is summarized in
the following box.

Algorithm: RJMCMC
Provide an initial topology and assign it to M(0). Iterate T
times and at the tth iteration perform the following steps .

1) Candidate selection: Suppose M(t − 1) = M
(k)
i . If

Pk = 1, randomly select a gene from the non-parent
genes; If Pk = Qmax, randomly select a gene from the
parent genes; Otherwise, randomly select a gene from
all G genes

2) If the gene is a parent in M(t − 1)
• Death move: Remove the node associated with the

selected gene from M (k) to obtain topology M
(j)
i .

Set M(t) = M
(j)
i with probability

λ = min{BF (j, k), α(j, k)}/α(j, k)
Otherwise M(t) = M

(k)
i .

else
• Birth move: Add the node associated with the select

gene to M (k) to

obtain topology M
(l)
i . Set M(t) = M

(l)
i with

probability
λ = min{BF (l, k), α(l, k)}/α(l, k).
Otherwise M(t) = M

(k)
i .

In this algorithm, BF (Mi, Mk) is the Bayes factor between
Mi and Mk and is defined as

BF (j, k) =
p(y|Pa(j)

i )

p(y|Pa(k)
i )

(15)

In addition, α(j, k) is calculated as the product of the topology
prior ratio rt and the probability ratio of moves rm, i.e.,

α(j, k) = rt(j, k)rm(j, k) (16)

where

rt(j, k) =
p(Mj)
p(Mk)

=

{
1−q

q for death move
q

1−q for birth move
(17)

and

rm(j, k) =

⎧⎨
⎩

Qmax

G if Pk = Qmax
G−1

G if Pk = 1
1 otherwise

(18)

α can be considered as a threshold on Bayes factor BF . When
BF > α, the proposed move is accepted with probability of
1 and otherwise it is accepted with probability BF/α. This
stochastic move can avoid being trapped on local high density
regions and thus possibly produce a global solution.

When the algorithm finishes, there will be T samples of
M

(k)
i and we discard the first couple of samples (which are

called burn-in) to account for convergence of Markov chain.
Afterwards, supposing that there are T ′ samples left, the APPs
can be approximated by

p(M (k)
i ) =

1
T ′

T ′∑
t=1

δ(M (k)
i − M(t)) (19)

where δ(·) is the Kronecker Delta function and M(t) denotes
the tth sample in the final collection.

D. Parameter learning

Once we determine the topology of the network, the model
parameters wi and σ2

i can be estimated according to the
minimum mean squared error (MMSE) criterion

wi,MMSE = B−1Pa(k)
i

�
yi (20)

and

σ2
i,MMSE =

y�
i P⊥yi+γ0

2
N+ν0

2 − 1
(21)

where B = Pa(k)
i

�
Pa(k)

i + R−1, and

P⊥ = IN − Pa(k)
i B−1Pa(k)

i

�
.
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IV. TEST RESULTS AND CONCLUSION

We tested the proposed DBN and the RJMCMC learning
algorithm on the cDNA microarray data of 58 genes in the
yeast cell cycles, reported in [8]. The dataset contains 18 sam-
ples evenly measured over a period of 119 minutes. Missing
values exist in this data sets and simple spline interpolation
was used to fill in the missing data. When implementing the
RJMCMC algorithm, we used γ0 = 0.36 and ν0 = 1.2 and we
set T = 10, 000 and ran the algorithm 10 times independently.
Also we set Qmax = 5 and assumed that on average there were
2 parents for each gene,which implies q = 2/58.

The inferred network is shown in Figure 2. In this network,
the nodes are labeled with gene names. The thickness of the
arrow is determined by the magnitude of the corresponding
weight, which denotes the degree of regulation. If the weight
is positive, up regulation would be implied and a solid edge
is used for the arrow. Otherwise, a dash line is used, which
represents down regulation. We compared the network with
the KEGG pathway map (http://www.genome.jp/kegg/) and
marked the unconfirmed regulations by blue edges. A con-
firmed regulation suggests a true positive in our inference
results. The brown-shaded nodes are the genes that were
not included in the KEGG map. We observed some general
interaction networks supported by previous experimental and
computational studies. However, many interactions appeared
inconsistent with the current biological views presented in the
KEGG map. We calculated the posterior distribution of the
topology for each gene. We plot a the APPs of the topology
of gene CDC28 in Figure 3. The largest and the second
largest probabilities are 0.036 and 0.021. Because it is small,
we do not have good confidence about this MAP solution.
We also calculated the respective averages over the largest
and the second largest a posteriori probabilities of all the
genes and they are 0.0257 and 0.0203. We observed that the
difference between the two probabilities is slim. This suggests
that, in addition to the inferred network, there were competing
topologies that are almost equally likely to be a solution.

In this paper, we proposed a dynamic Bayesian network
modeling of time series microarray data. A RJMCMC algo-
rithm is adopted for determining the network topology. The
developed full Bayesian solution can provide information on
the APPs of topology, which can be used as an indication to
the confidence on the inferred results. We tested the proposed
method on yeast microarray data in cell cycles. The estimated
APPs indicated generally low confidence in the results. This
is mainly due to the small data size and possibly inaccuracy
in the assumed linear regulatory models.
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