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ABSTRACT

This paper reports a simple nonlinear approach to online acoustic
speech pathology detection for automatic screening purposes. Straight-
forward linear preprocessing followed by two nonlinear measures,
based parsimoniously upon the biophysics of speech production, com-
bined with subsequent linear classification, achieves an overall nor-
mal/pathological detection performance of 91.4%, and over 99%
with rejection of 15% ambiguous cases. This compares favourably
with more complex, computationally intensive methods based on a
large number of linear and other measures. This demonstrates that
nonlinear approaches to speech pathology detection, informed by
biophysics, can be both simple and robust, and are amenable to im-
plementation as online algorithms.

1. INTRODUCTION

The linear source-filter theory of voice production states that the vo-
cal folds oscillate during voiced speech, driving the vocal tract into
resonance at specific frequencies. These acoustic pressure waves,
radiating from the lips, are modelled as a further filtering of the flow
rate signal. By spectral deconvolution and post-filtering of the sam-
pled speech pressure signal, p(n), it is possible to approximate the
aerodynamic flow rate signal u(n) at the top of the vocal folds [1].

However, studies of sustained vowel speech signals show that
nonlinearity and turbulence are important features [2], even of nor-
mal speech [3]. Modelling and experimentation show that turbulent
airflow and nonlinearity in the vocal fold dynamics are important,
and that vocal pathologies often lead to apparently chaotic [4] and
turbulent behaviour, manifesting as increased “hoarseness” [5]. For
some types of vocal pathology, oscillation ceases altogether, or the
oscillation is intermittent. The speech signal is then dominated by
turbulent airflow noise.

Vocal pathologies arise due to accident, disease, misuse of the
voice, or surgery affecting the vocal folds and have a profound im-
pact on the lives of patients. Commonly used by speech pathologists
are acoustic tools, recording acoustic pressure at the lips or inside the
vocal tract. These tools [6], amongst others, can provide potentially
objective measures of voice function, and could be used for auto-
matic screening for vocal pathologies, partially relieving the burden
on clinicians of constant reexamination, e.g. for progress assessment
during therapy.

However, there are many differing approaches to automatic screen-
ing. Most of these are based around a large set of measures, using
many linear processing techniques such as the discrete Fourier trans-
form, variance, autocorrelation, and other techniques such as peak-
picking, and speech pitch detection [7]. These measures are then
passed on to a neural network which classifies the speech signal as
normal or pathological [5, 8]. However, such approaches are inher-
ently complex, leading to two significant problems. The first is the
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risk of being too flexible and hence highly optimised to the train-
ing data [9], limiting generalisation performance on new data. The
second problem is that such approaches require large computational
resources, prohibiting their use in portable devices.

The origin of these problems is that speech signals exhibit very
complex dynamics, which cannot, prima facie, be characterised by
linear methods such as spectral analysis. Hence there is a need for
a simpler treatment of the problem, grounded in more realistic bio-
physics of speech production, which does not transfer the complexity
of the detection task into later post-processing.

2. METHODS

2.1. Method Design

While nonlinear signal processing methods can solve some of the
problems highlighted above, they also have drawbacks. The most
serious of these are (1) arbitrary algorithmic parameters whose value
propagates to the results, making the validity and reproducibility of
the method uncertain, (2) sophistication that is unjustified for the
problem, especially when simpler linear methods outperform [10],
(3) inappropriate application which without prior information on the
dynamics often gives misleading results, (4) much higher sensitiv-
ity to noise and other uncontrolled environmental factors than linear
methods, (5) failure to scale up computationally, quickly becoming
infeasible, despite nonlinear effects often becoming apparent only
on large data sets.

Nonlinear algorithms can be of value if they can overcome these
pitfalls. Therefore, the current method makes use of non-parametric
techniques or those that use as few algorithmic parameters as pos-
sible, using the simplest algorithm where possible. The choice of
algorithms incorporates knowledge of the biophysics of speech pro-
duction, and it is designed to work with signals collected in known,
controlled circumstances.

2.2. Return Period Density Entropy (RPDE)

The return period density entropy is a simple method, which un-
der certain assumptions, can be used to distinguish types of (non-
transient) complex dynamical behaviour represented in a signal which
might possibly be contaminated by highly correlated noise. It is
based upon the theory of continuous dynamical systems [11], and
makes use of Poincaré sections of the sampled trajectory x(n) for
time indices n = 1, 2, 3 . . . of a differential flow which have been
time-delay embedded, following Taken’s embedding theorem [12].
Here the time-delay embedding is implicit in finding the numer-
ical maxima return series y(i) for intersection sequence numbers
i = 1, 2, 3 . . . of the signal x(n). This signal represents sampled ex-
perimental observations of an underlying differential flow [11]. The
maxima operation was chosen as it is computationally simple yet
robust. Based upon analysis of the time index differences d(i) =
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ni+1 − ni between these maxima returns, it is possible to diagnose
the behaviour of the underlying dynamics, as follows.

Given an initial condition for the dynamical system, the result-
ing unique trajectory in the state-space can display many different
kinds of behaviour. Of interest in this context are periodic, period-
doubled, and chaotic behaviours [11]. It is assumed that the maxima
operation produces an appropriate Poincaré section such that for pe-
riodic orbits, the trajectory intersects the section at the same point
once per cycle, leading to a constant sequence of time index dif-
ferences d(i). Similarly, successive period-doubled orbits of length
2k, k = 2, 3, . . . will intersect the section at 2k places, causing the
differences d(i) to form a sequence of length 2k . For (hyperbolic)
chaos, the trajectory intersects the section in a structured set of points
that is often complicated and fractal [12]. In this case the time in-
dex differences will consist of subsequences of lengths 2k for all
k. Finally, for highly correlated noise, the series d(i) will contain a
random sequence of values (note that correlation is required to avoid
finding spurious, noisy maxima).

Considering periodic to be the simplest possible type of behaviour,
and chaotic the most complex, a measure of the degree of complex-
ity is the entropyH of a period density function f(d) constructed by
normalising a histogram of the series d(i):

H = −
N∑

d=1

f(d) ln f(d) (1)

where N is the maximum time index difference found in the series
d(i).

When H = 0, there is only one non-zero value of f(d) in-
dicating a periodic orbit. An increase in H indicates an increase
in different periods d represented in the trajectory, or equivalently,
noise-induced random variations in the values of d(i). For an ad-
ditive mixture of deterministic dynamics with correlated noise, the
noise decreases the sharpness of the period density function f(d)
peaks with increasing noise variance. These changes in f(d) prop-
agate to the entropy H , thus noise of increasing variance increases
the measured complexity of the signal x(n).

Summing up, using H , it is possible to rank a set of signals
on a scale of both deterministic and stochastic complexity. It may,
however, not be possible to distinguish, from a finite duration signal
x(n) whether the dynamics is period-doubled with large k value,
chaotic, or deterministic with high variance additive noise, and so
an absolute scale of complexity is usually unobtainable in practice.
Nevertheless, it is possible to rank a certain data set of signals of
finite length, which is adequate for the current purposes. For a more
detailed derivation of this technique, please see [13].

2.3. Detrended Fluctuation Analysis (DFA)

Detrended fluctuation analysis is a straightforward technique for iden-
tifying the extent of fractal self-similarity in a signal [14]. It is de-
signed to calculate the scaling exponent α in nonstationary time se-
ries (where the statistics such as mean, variance and autocorrelation
properties change with time).

First, the time series x(n) is integrated:

y (n) =
n∑

j=1

x (j) (2)

so that, for example, assuming x(n) is independent and identically
distributed, then y(n) is a self-similar random walk. Then, y(n) is
successively subdivided into windows of length L samples. For a

times series of lengthM samples there will be the nearest integer to
log2 M scales. A least-squares straight line local trend is calculated
by analytically minimising the squared error E2 over the slope and
intercept parameters a and b:

arg min
a,b

E
2 =

L∑
n=1

(y (n) − an − b)2 (3)

Next, the root-mean-square deviation from the trend, or fluctua-
tion is calculated over every window at every time scale:

F (L) =

[
1

L

L∑
n=1

(y (n) − an − b)2
]1/2

(4)

This process is repeated over all subdivisions of all lengths L. On
a log-log graph of L against F (L), a straight line indicates self-
similarity expressed as F (L) ∝ Lα. The scaling exponent α is
calculated as the slope of a straight line fit to the log-log graph of
L against F (L) using least-squares as above. An efficient algorithm
is used here which shares the summation terms in equation (3) over
all time scales. For a more in-depth presentation and discussion of
self-similarity in time series in general, please see [12].

2.4. Gaussian Linear Discriminant Analysis (LDA)

For the purpose of discriminating between the two classes of nor-
mal and pathological cases, Gaussian linear discriminant analysis is
a simple technique that allows linear separation by modelling the
data conditional upon each class using joint Gaussian probability
densities [15]. For a J × K data matrix v = vjk of observation
(measure) j and case k, these likelihood densities are parameterised
by the means and covariance matrix of the data set:

µ = E [v] ,C = E
[
(v − µ) (v − µ)T

]
(5)

whereE is the expectation operator, and µ is the mean vector formed
from the means of each row of v. The class likelihoods are:

fC (w|Ci) = (2π)−J/2 |C|−1/2 exp
[
− 1

2
(w − µi)

T
C

−1 (w − µi)
]

(6)
for classes i = 1, 2 and an arbitrary observation vector w. It can
be shown that, given this Gaussian class model, the maximum like-
lihood regions of the observation space R

J are separated by a de-
cision boundary which is a (hyper-)plane calculated from the dif-
ference of log-likelihoods for each class, which is the unique set of
points where each class is equally likely [15]. The maximum like-
lihood classification problem is then solved using the decision rule
that l(w) ≥ 0 assigns w to class C1, and l(w) < 0 assigns it to
class C2, where:

l (w) = a
T
w − θ

a = C
−1 (µ1 − µ2) , θ = 1

2

(
µ

T
1 C

−1
µ1 − µ

T
2 C

−1
µ2

)
In order to avoid overfitting, the generalisation performance of the
classifier can be tested using bootstrap resampling [16]. The clas-
sifier is trained on K cases selected at random with replacement
from the original data set of K cases. This trial resampling pro-
cesses is repeated many times and the mean classification parame-
ters E [a] , E [θ] are selected as the parameters that would achieve
the best performance on entirely novel data sets.
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2.5. Automatically Detecting Vocal Pathologies

The overall process is depicted in Fig. 1. For each speech exam-
ple, the RPDE algorithm is calculated on a spectrally whitened and
post-filtered version of the speech signal, and the DFA algorithm is
calculated on the unprocessed speech signal. The resulting outputs
H and α for each speech signal are passed on to the trained LDA al-
gorithm which classifies the speech as either normal or pathological.

The formant spectrum V (z) of the speech signal p(n) is iden-
tified using linear prediction analysis (LPA) [17], and then removed
using inverse filtering, i.e. by applying the filter V (z)−1 to p(n), to
leave a residual signal w(n). Subsequent application of a radiation
impedance filterR(z) obtains an estimate for the vocal fold flow rate
signal u(n). This is a low-pass filter having unit magnitude response
at zero frequency, i.e. R(1) = 1, with transfer function:

R (z) = (1 − r)2
(
1 − rz

−1
)
−2

. (7)

Parameter r controls the resonance of the single pole. Using the
zero-phase technique, i.e. applying the filter forwards over the sig-
nal, then reversing the output, and applying the filter once again can-
cels any phase delay [17]. In this paper, r = 0.97 was chosen to
provide the best identification of u(n). Next, the RPDE algorithm
calculates the maxima series y(i) of u(n) and the period density
function f(d), from which the value of H is obtained. The DFA
algorithm calculates α from the original, unprocessed speech sig-
nal p(n). For classifier training, the data matrix v receives K ran-
dom selections of the Hk and αk for all subjects k and the mean
classification parameters are calculated over 1000 such selections.
Subsequently, l(wk) = [Hk, αk]T gives the classification perfor-
mance for cases correctly classified as normal (C1, true negative)
and pathological (C2, true positive). The signals p(n)were of length
M = 18000, the LPA analysis order was P = 15 over 1000 sam-
ples, and 1000 samples were skipped at the beginning and the end
after the low-pass filter to skip filter transients.

Fig. 1. Overall process of speech pathology detection.

Overall then, any disorder of the vocal folds that causes more
complex oscillations will be detected as a (relative) increase in H ,
and changes in turbulent airflow will be detected as a relative change
inα. To ensure good control of environmental conditions, this method
makes use of sustained vowels.

3. DATA

Used in this study are sustained vowel phonation samples fromK =
707 subjects from the Kay Elemetrics Disordered Voice Database
[18], 53 of which are from normal controls. This represents a wide
variety of organic, neurological and traumatic voice disorders. Each
sample was recorded under controlled acoustic conditions, and is on
average around two seconds long, 16 bit uncompressed PCM. The
normal control samples were recorded at 50kHz and then downsam-
pled with anti-aliasing to 25kHz.

4. RESULTS AND CONCLUSIONS

Fig. 2 shows the results of the measures applied to a typical normal
and pathological case. Fig. 3 plots the measures calculated over all
the 707 cases, and shows the average decision boundary calculated
over 1000 bootstrap trials. Finally, Fig. 4 shows the convergence of
the classification performance for true positives, true negatives, and
overall, as the number of bootstrap trials increases.
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Fig. 2. Left column: normal case, right column: pathological case.
Rows from the top: Speech pressure signals p(n), vocal fold flow
rate signals u(n), return period densities f(d) with entropy H , and
log-log plot showing variation of fluctuations F (L) with L with
best-fit line and scaling exponent α.
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Fig. 3. Return period density entropy H against detrended fluctua-
tion analysis α for all 707 subjects, showing mean linear discrimi-
nant analysis classification boundary calculated over 1000 bootstrap
resampling trials.

Although the normal model for the probability density of these
classification results is not exact, leading to some inconsistencies
(such as some trials having greater than 100% performance), the nor-
mal density leads to 95% confidence intervals of 94.3 ± 6.3% true
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Fig. 4. Classification performance convergence.

negative, 88.4 ± 3.1% true positive, and overall 91.4 ± 3.9% per-
formance. This result compares favourably with other approaches
which achieve overall rates of 93.5% [5] and 92.8% [19], but less
so with another study reporting an overall performance of 98.2% by
combining both standard and nonlinear approaches [8].

However, a hard decision boundary leads to unclassifiable, am-
biguous cases, and Bayesian modelling obtains the posterior proba-
bility of correct classification. A parameter that affects the size of the
ambiguity reject regionmay be integrated out to obtain an area under
the receiver operating characteristic curve [15]. Experiments using
an unsmoothed, Bayes optimal logistic classifier with moderation
[15] revealed an area of 92.5%. LDA was favoured, and rejecting
15% of ambiguous cases lead to over 99% overall performance.

Comparing likely generalisation performance, this method has
only five arbitrary parameters: the number of analysis samples N ,
LPA window length, LPA analysis order, low-pass filter transient
skip length and parameter r. This is by far the best of the other stud-
ies [5, 8], which both mention explicitly at least 20 arbitrary param-
eters. These studies also rely on other methods, which themselves
contain more arbitrary parameters. None of the other studies report
confidence intervals, and all are significantly more computationally
expensive and trained on far fewer patients (at most 400 by com-
parison to 707 for this study). For these reasons it is hard to have
confidence in their generalisation performance on novel test data,
and their utility in mass screening or portable applications.

Not all cases show self-similarity over the whole range of avail-
able scales (see the scaling curves in Fig. 2). Nonetheless, the mean
and variance of α differs significantly between normal and patholog-
ical cases. Improvements to this method would resolve the choice of
the arbitrary parameters, perhaps using model-based surrogate data
methods [12].
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