
SMOOTHNESS CONSTRAINT FOR THE ESTIMATION OF CURRENT DISTRIBUTION
FROM EEG/MEG DATA

Wakako Nakamura1,2, Sachiko Koyama3, Shinya Kuriki3 and Yujiro Inouye1,2

1Interdisciplinary faculty of science and engineering, Shimane university,
1060 Nishikawatsu-cho, Matsue 690-8504, Japan

2 Lab for Advanced Brain Signal Processing, Brain Science Institute, RIKEN,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan

3Lab of electromagnetic sensing, Research institute for electronic science, Hokkaido university,
Kita 12 Nishi 6, Kita-ku, Sapporo, 060 0812, Japan

ABSTRACT

Separation of EEG (Electroencephalography) or MEG (Magnetoen-
cephalography) data into activations of small dipoles or current den-
sity distribution is an ill-posed problem in which the number of pa-
rameters to estimate is larger than the dimension of the data. Several
constraints have been proposed and used to avoid this problem, such
as minimization of the L1-norm of the current distribution or mini-
mization of Laplacian of the distribution. In this paper, we propose
another biologically plausible constraint, sparseness of spatial dif-
ference of the current distribution. By numerical experiments, we
show that the proposed method estimates current distribution well
from both data generated by strongly localized current distributions
and data generated by currents broadly distributed.

1. INTRODUCTION

EEG and MEG are fundamental recording methods to study activ-
ities of neurons in the brain noninvasively and with fine time res-
olution. Three-dimensional identification of the area in the brain
where an evoked potential is generated is an important problem for
EEG/MEG data analysis. Researchers often use estimation of cur-
rent density distribution in the brain for the purpose.

It is well known that the estimation of current distribution is an
ill-posed problem. Usually we assume that there are several thou-
sands or several ten thousands current dipoles in the cortex and es-
timate their activities. The dimension of data, that is, the number
of EEG electrodes or MEG sensors is at most several hundreds. We
need an additional assumption on activities of current dipoles in or-
der to obtain them uniquely.

Several assumptions have been proposed for the purpose. Based
on the assumption of minimum energy, [1] and [2] proposed the min-
imum L2-norm criteria. Later, [3] proposed minimization of L1-
norm, which leads to a small number of active dipoles. [4] proposed
a method called LORETA, which is also widely used for the esti-
mation of current distribution. It assumes that activities of current
dipoles are smoothly distributed in space.

The assumption of continuous activity of neurons of LORETA
seems biologically plausible. “Continuous” means that neurons lo-
cated close to each other have similar activations. Besides conti-
nuity, LORETA assumes that activation of neurons is as smooth as
possible. However, considering studies on neural network models in
which neurons are activated synchronously, a different type of conti-
nuity seems more plausible. Often in these models using dynamical

systems, in most part of the cortex, the activity of a neuron is similar
to those of neurons nearby. However, in some part, there is a gap
between two neuron groups and the gap is not necessarily small.

In this paper, we propose a new kind of estimation method for
current density distribution consistent with this kind of continuity,
that is, the distribution changes at only a small number of areas and
these changes can be large. We simulate MEG data and analyze them
with the proposed method and conventional methods for estimation
of current density distribution. We demonstrate that our proposed
method can give satisfactory estimation both for a strongly localized
distribution and for a broad distribution.

2. ESTIMATION OF CURRENT DENSITY DISTRIBUTION

In this section, we summarize previously proposed estimation meth-
ods of current density distribution. First, we describe the data gen-
eration model for MEG or EEG data. We define b as recorded MEG
or EEG data, x as a current density distribution and L as a lead field.
x consists of activities of current dipoles xi and xi is represented in
three dimensional Cartesian coordinate including the dipole’s direc-
tion.
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Data generation process can be modeled as follows.

b = Lx + n (1)

where n is Gaussian noise.

2.1. Minimization of L2-norm of the density

This method seeks the current density that is consistent with the ob-
tained data b and that has the minimum L2-norm. Practically, we
allow a certain level of noise on EEG or MEG channels and use the
following cost function.

‖b − Lx‖2 + α‖x‖2 (2)

The value of ‖x‖ that minimizes the above cost function is adopted
as the estimation of x[1, 2].
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2.2. Minimization of L1-norm of the density

This method supposes that the current density which minimizes L1-
norm |x| allowing a certain level of noise is an estimation of the
true density[3]. We can use the cost function similar to eq. (2).
Here, instead, we use the following formulation to make the problem
a second-order cone programming problem. Under the following
constraint with an appropriate δ,

‖b − Lx‖ < δ (3)

we seek a current density which minimizes |x|. The criterion is
derived from the assumption that an area with large neural activity is
narrow and localized.

2.3. Minimization of the Laplacian(LORETA)

The method minimizes the discrete Laplacian of the current density
under the constraint b = Lx [4]. For the analysis, we used a modi-
fied method called sLORETA(standardized LORETA) [5] consider-
ing effects of noise. The cost function to minimize is as follows.

‖b − Lx‖2 + α
X
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(4)

The second term is the discrete Laplacian. Here, Φi is a set of indices
of current dipoles located near the i-th current dipole. In LORETA
and sLORETA, smooth spatial change of the current distribution is
assumed.

3. INTRODUCING NEW MEASURE OF CONTINUITY OF
CURRENT DISTRIBUTIONS

If a neural activity causes electromagnetic field measurable from out-
side of the skull, then the activity is likely to be a synchronous activ-
ity of many neurons. If these active neurons are localized in a very
narrow area, the minimization of L1-norm is an appropriate method
to estimate the current distribution. In this case, the assumption of
a few active points is consistent with the data. However, if these
neurons are distributed in an area which is as wide as a few cm2,
the method may not work well. On the other hand, LORETA is the
method assuming continuity of the activity in space and it is appro-
priate when neurons in a relatively wide area are firing. Then, is
the other assumption of LORETA, that is, the smoothness of a dis-
tribution plausible? Considering properties of neural activities, we
expect that there can be a sudden change of the activity at the border
of a group of neurons firing synchronously and a group of neurons
not joining the activity. It is not necessarily a smooth change as as-
sumed in LORETA.

Therefore, in this paper, we introduce a different measure of the
continuity of the current density. Practically, we assume two as-
sumptions. (1) In most points in the brain, the value of the current
density is very close to the value around the point (2) Changes of the
value of the density occur at a small number of areas and these can
be large changes.

We can characterize this kind of continuity by L1-norm of spa-
tial difference. As minimization of usual L1-norm leads to a sparse
distribution[6], minimization of L1-norm of spatial difference leads
to sparse spatial changes of activity. The actual measure of the con-
tinuity is as follows.

X
(i,j)∈Ω

X
k=1,2,3

|xik − xjk|, Ω :
a set of pairs of dipoles
next to each other

(5)

The estimation method that we propose is the minimization of the
above cost function under the constraint of eq. (3). Since we use
L1 norm, the minimization problem can be written in a form of a
second-order cone programming problem.

4. EVALUATION OF THE PROPOSED METHOD

We applied various methods to several artificially generated data.
Methods that we evaluated are the proposed method using mini-
mization of L1-norm of difference, one using minimization of L2-
norm, one using minimization of L1-norm and sLORETA. To solve
second-order cone programming problems for the minimization of
L1-norm or L1-norm of difference, we used next two programs that
are available through World Wide Web. One is SeDuMi[7] and we
used it for solving the second-order cone programming actually. The
other is YALMIP[8] and we used it mainly as an interface for using
SeDuMi.

We defined a set of points on which we placed current dipoles
for analysis so that these points covered the cortex. We placed 1657
points on the gray matter only by using MR images of a subject. We
simulated three kinds of MEG data.

(A) We chose only one or two points from the set of points and
assumed that only one or two current dipoles on these points
were active.

(B) We chose one or two groups of several successive points from
the set of points and assumed that these points were active.

(C) We defined one or two sets of points which were not related
to points previously defined for analysis. In these new sets,
points were placed in a more dense way. We assumed that
there were current dipoles on these densely placed points and
they were active.

We prepared 4 sets of simulated MEG data with each (A)-(C) type
of current density. Among these 4 sets, 3 sets have a single activated
area at different positions in the brain. The other set have double
activated areas. We added Gaussian noise on every channels of every
data set. The standard deviation of the noise was set to 1% and 5% of
that of the signal. We also generated a data set that consists of noise
only and used it to determine the value δ in eq. (3) or regularization
coefficients α for the minimization of L2-norm or sLORETA.

We show the outline of the results of estimation. For data type
(A) and 5% noise, where only one current dipole is activated, an
example of the estimation is shown in Fig 1. For the data set, the
assumption of the minimization of L1-norm suits very well. There-
fore, with the method, we could obtain the true current density al-
most perfectly. The result by the proposed method was the second
best. Although small activations were estimated around the true ac-
tivated point, the result estimated by the proposed method describes
the characteristics of the true density well. Other two methods es-
timated broader activation area than the true answer and they could
not detect that the true activation area is strongly localized.

For data type (C) and 5% noise, where broad and continuous
activity of small current dipoles are assumed, an example of the es-
timation is shown in Fig 2. All methods estimated the places of
activations accurately. However, the estimated area of activation
varied. By the minimization of L1-norm, strongly localized acti-
vation was estimated though for this data, the true activated area was
wider. The activations estimated by the minimization of L2-norm
and sLORETA seem good though they are a little broader than the
true activated area. The proposed method estimated narrower area
than these two methods and the estimated area is closer to the true
activated area.
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Fig. 1. An example of the estimation of one point activation with type (A) data with 5 % noise. Only magnitudes of current dipoles are shown
and they are represented by sizes of circles. (a) The true current density that we used to simulate MEG data. Other graphs are results of
estimation by (b) minimization of L2-norm. (c) minimization of L1-norm. (d) sLORETA. (e) proposed method that minimizes L1-norm of
spatial difference. upper left:sagittal. upper right: coronal. lower left: transverse.

We did not show the result of type (B) data due to page limita-
tion. The trend was similar to the type (C) data. The trend of results
of estimation for data with 1% noise is also similar to that for data
with 5% noise for all data types (A)-(C).

For further evaluation of these results, we calculated a simple
estimation error defined by the following equation.

‖xtrue − xestimated‖
‖xtrue‖ (6)

For a set of data type (C), this measure cannot be directly defined
because places of dipoles are different for xtrue and xestimated. For
these data sets, we transformed the true activation of dipoles into
a corresponding activation of a set of dipoles used for the analysis.
Each dipole used to generate data is represented by the nearest dipole
in the dipole set for analysis. Activations of dipoles in the set for
analysis were defined by sums of activations of dipoles assigned to
them to represent.

Values of the measure are summarized in Table 1. For type (A)
data, values of the minimization of L1-norm is by far the best. The
proposed method is the second best. Though the value of the mea-
sure for results by the proposed method is not very small, as we
showed in Fig 1, actually, the proposed method often recovered the
characteristics of the original distribution well. Among 8 data sets
generated by only one or two active current dipoles, with 6 data sets,
the method estimated this characteristics of strongly localized acti-
vation clearly. For data set (B) and (C), the proposed method clearly

Table 1. Values of estimation error calculated by eq. (6). Each
value is a mean for 4 data sets. (A)-(C) corresponds to the type
of true current density. 5% and 1% mean the level of noise. The
used estimation methods are minimization of L2-norm (L2-norm),
minimization of L1-norm (L1-norm), sLORETA and minimization
of L1-norm of spatial difference (L1-norm of diff).

L2-norm L1-norm sLORETA L1-norm of diff
(A) 5% 1.030 0.05731 1.045 0.7292
(B) 5% 1.021 1.621 4.028 0.6281
(C) 5% 1.013 1.058 1.027 0.7962
(A) 1% 1.019 0.009870 1.107 0.3981
(B) 1% 0.9918 1.345 4.369 0.6148
(C) 1% 0.9914 1.003 1.018 0.7835

outperformed other three conventional methods. These trends are
common with two noise levels.

5. DISCUSSION

We proposed a new criterion for the estimation of the current density
from EEG/MEG data, the minimization of the L1-norm of the spa-
tial difference. The criterion is biologically plausible. and it can be
formulated as a problem of second-order cone programming. By the
analysis of simulated MEG data, we showed that the method gave
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Fig. 2. An example of the estimation of a broad activation. Distributions were estimated from type (C) data made by two actiaved areas
and 5 % noise. Only magnitudes of current dipoles are shown and they are represented by sizes of circles. (a) The true current density that
we used to simulate MEG data. Dipoles are distributed densely. Other graphs are results of estimation by (b) minimization of L2-norm. (c)
minimization of L1-norm. (d) sLORETA. (e) proposed method that minimizes L1-norm of spatial difference. upper left:sagittal. upper right:
coronal. lower left: transverse.

satisfactory results both for data with strongly localized current dis-
tribution and data with more broadly distributed activation. Three
conventional methods that we tested for comparison could estimate
the distribution well for only one of two kinds of data.

The method of using the sparseness of difference is a variation
of methods introduced in [9]. In [9], difference meant temporal dif-
ference and they discussed not only the sparseness but entropy of
various kinds of distributions of source signals. The success of our
method may be explained by the same entropy minimization frame-
work. Also, the method applied in image processing in [10] is rele-
vant to our proposed method.
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