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ABSTRACT

This paper explores a novel approach for ventricular and
atrial activities estimation in electrocardiogram (ECG) sig-
nals, based on sparse source separation. Sparse decompo-
sitions of ECG over signal-adapted multi-component dictio-
naries can lead to natural separation of its components. In
this work, dictionaries of functions adapted to ventricular and
atrial activities are respectively defined. Then, the weighted
orthogonal matching pursuit algorithm is used to unmix the
two components of ECG signals. Despite the simplicity of the
approach, results are very promising, showing the capacity of
the algorithm to generate realistic estimations of atrial and
ventricular activities.

1. INTRODUCTION

Atrial fibrillation (AF) is the most common type of human
arrhythmia and it is responsible for about one third of hos-
pitalizations for arrhythmia problems. AF is more frequent
in elderly, as its prevalence doubles with each decade of age,
from 0.5% at ages between 50-59 years to almost 9% at ages
between 80-89 years. AF is an important clinical entity be-
cause of the increased risk of morbidity and mortality. The
most frequent consequences are hemodynamic function im-
pairment (loss of atrial synchronized contraction, irregular
and inadequately rapid ventricular rate), atriogenic throm-
boembolic events and tachycardia induced atrial and ven-
tricular cardiomyopathy. AF diagnosis has been assessed for
years by visual inspection of the surface electrocardiogram.
On the ECG, the AF signals are characterized by continuous,
apparently disorganized, fibrillatory waves (F-waves). Due to
the much higher amplitude of the electrical ventricular activ-
ity (VA) on the surface ECG, isolation of the atrial activity
(AA) component in the ECG is crucial for the study of AF.

Some methods used to solve this problem are based on
average beat subtraction (ABS). These methods are built on
the assumption that the AA is uncoupled with the VA. An av-
erage of the ventricular complexes (QRST complexes) is then
used to subtract VA [2]. Other approaches are blind source
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Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
The work presented in this paper was performed in the framework
of his M.S. Thesis [1].

separation methods based on independent component anal-
ysis (ICA). They try to find independent components in an
instantaneous linear mixture [3]. A major difficulty in ABS
approaches is the limitation imposed by the use of a small
number of VA average templates for general VA approxima-
tion. In present ICA based approaches, a major gap is that
only statistical priors are considered without taking into ac-
count the structural nature of signals. In order to circumvent
these problems, a possible direction to explore is the use of
sparse source separation approaches based on signal adapted
redundant dictionaries.

During the past decade, important advances have been
achieved in nonlinear signal approximation methods for sparse
decompositions over redundant dictionaries (e.g. [4, 5, 6]). In
many applications, these techniques offer better performances
than those based on orthonormal transforms or direct time
domain processing, thanks to their good capacity for efficient
signal modeling. In this paper, we present a novel approach
for VA and AA estimation. We explore a source separation
method based on sparse decomposition of ECG signals on a
redundant multi-component dictionary. Such an approach al-
lows for the consideration of priors on the structural nature of
the different class of signals we are willing to separate. The
multi-component dictionary is composed by functions spe-
cially designed to match the main structural characteristics
of VA and AA signals. We also present Weighted Orthogonal
Matching Pursuit (Weigthed-OMP) [6] as a tool for generat-
ing ECG sparse approximations for source separation.

2. UNDERDETERMINED SPARSE SOURCE
SEPARATION

Let fmixj (t) : j ∈ [0, M − 1] be a set of M signal mixtures
generated by the weighted superposition of N source signals
fi (t) : i ∈ [0, N − 1] such that:

fmixj (t) =

N−1∑
i=0

aj,i · fi (t) + nj(t), (1)

where nj(t) represents some additive noise.
Source separation is a classical problem in many fields

like acoustics, radio or medical signal and image processing.
Many applications exist where the retrieval of the different
additive components, forming a set of complex signals, is re-
quired. The use of sparse signal representations in source
separation problems was proposed in [7] in order to exploit
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some prior knowledge about the structural characteristics of
each fi (t). Many signals can be sparsely represented by the
superposition of a limited number of atoms from an adapted
dictionary of functions (D = {gl(t) : l ∈ Ω}):

fi (t) =
∑
l∈Λ

bi
l · gi

l (t) + R|Λ|
fi(t)

, (2)

where bi
l are the atom coefficients, Λ ⊂ Ω and RΛ

fi(t)
is an

eventual residual that depends on Λ.
Combining Eq. (1) and Eq. (2), one derives that, in order

to solve the separation problem, the set of mixing coefficients
aj,i and a sparse set of expansion coefficients bi

l must be re-
covered while nj(t) are kept as small as possible. Indeed,
accurate sparse models can efficiently capture the structural
nature of signals, leading to better source separation results
as exposed in [7].

A challenging form of sparse source separation problem is
when there are fewer mixtures than sources. An example is
the separation of the different components from a single ECG
channel trace. This is studied in this work through the use of
a novel sparse source separation approach. In order to do this,
we adapt the two stage separation process proposed in [7] to
the particular case of ECG components estimation: First, we
a priori design an overcomplete dictionary where sources are
assumed to be sparsely representable. Second, the sources
are unmixed by exploiting their sparse representability.

3. ECG COMPONENTS SEPARATION

In this section, we formulate the estimation of ECG activities
according to the signal models and sparse source separation
strategy described in Sec. 2. The ECG signal (fECG) is mod-
eled as a noisy mixture of the two cardiac activities of interest
(fAA and fV A):

fECG = fAA + fV A + n, (3)

where n stands for the noise.
The generation of good sparse models for fAA and fV A re-

quires the use of basis functions fitting their particular struc-
tures. As shown in the following, fAA and fV A have quite
different characteristics, and this is what enables us to sepa-
rate them. The approach we propose is based on the decom-
position of fECG on a redundant dictionary (D) composed
by the union of two sub-dictionaries: DV A suited for repre-
senting the ventricular activity and DAA, better adapted for
representing the atrial activity. In the following D, DV A and
DAA stand for the synthesis matrices of D,DV A and DAA

respectively, where each column represents an atom of the
dictionary. Hence,

fECG � D · b = DAA · bAA + DV A · bV A. (4)

Given the noisy nature of fECG and the high complex-
ity of each of its components, we exclusively consider sparse
approximations in this work. According to Eq. (4), b is com-
posed of two parts (bAA and bV A), each one containing the
coefficients related to DAA and DV A. The approach we ex-
plore is simple: one generates a sparse approximation of fECG

on D and then, estimates for fAA and fV A are reconstructed
by just using the components from the appropriate dictio-
nary:

fAA � DAA · bAA and fV A � DV A · bV A.
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Fig. 1. Left: QRST VA complex and its approximation using
just 3 atoms. Right: Effect of β on the GGF (see Eq. (5)).

3.1. Modeling ECG Ventricular Activity

The sub-dictionary DV A is generated by all possible transla-
tions of the Generalized Gaussian Function (GGF):

gV A(t) = C1 exp

(
−

( |t − p|
α

)β
)

, (5)

where C1 is a normalizing constant, α determines the scale
and β the peakiness. This waveform allows to well approxi-
mate the structure of a VA complex using few atoms. Fig. 1
(left) shows a QRST complex and its approximation by using
just 3 atoms. With respect to the Gaussian function, fine
tuning β gives us higher flexibility to approximate Q, R and
S peaks (see Fig. 1 on the right).

The possible values for α and β have been chosen exper-
imentally after an extensive set of tests: α ∈ {3, 4, ..., 7} ∪
{49, 50, ..., 54}, the first set adapted for Q, R and S waves
and the second intended for T wave approximation, while
β ∈ {1.5, 1.6, ..., 2.2}. Together with p, this makes DV A

highly coherent, but also very flexible for VA approximation.
However, such dictionary is far from being optimal, and sev-
eral improvements are still possible, mainly concerning the
approximation of T waves.

3.2. Modeling ECG Atrial Activity

The sub-dictionary DAA is generated by all possible transla-
tions of a real Gabor function:

gAA(t) = C2 exp

(
−

(
t − p

α
√

2

)2
)

cos

(
2πk(t − p)

N
− ∆ψ

)
,

where C2 is a normalizing constant, N is the signal length,
α tunes the scale, k the frequency and ∆ψ the phase. This
waveform is specially adapted for AA approximation. Indeed,
as can be observed in Fig. 2 (left), fibrillating AA is of os-
cillatory nature, which is a perfect fit for the optimal spatio-
temporal frequency localization of Gabor functions (see Fig. 2
on the right).

The values of the Gabor function parameters have been
determined through an extensive analysis on several ECG
signals (see [1]). During the design of DAA, special care in
limiting the maximum correlation between DAA and DV A

atoms was required. Indeed, an excessive correlation between
this two sub-dictionaries translates into a complete failure of
the algorithm.
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Fig. 2. Left: Example of a simulated AA wave during fibril-
lation. Right: Gabor atom.

4. ECG SPARSE DECOMPOSITION BY
WEIGHTED-OMP

Eq. (4) involves an underdetermined problem that has no
unique solution. The search for the sparsest approximation
of fECG requires the exhaustive testing of all coefficient possi-
bilities, i.e. it is a combinatorial problem. Various alternative
approaches have been proposed in order to make the retrieval
of a solution for b computationally affordable (see [4] for a
review of some of them). These, in general, do not guaran-
tee the recovery of the sparsest solution. Nevertheless, recent
results show that under certain conditions on the dictionary
and the signal, these sub-optimal methods find the sparsest
solution [5, 6]. In our case, Greedy Algorithms appear to be
the most appropriate family of decomposition algorithms to
handle the very large dictionary we use.

4.1. Weighted Orthogonal Matching Pursuit

Weighted-OMP [6] is the greedy algorithm used to decompose
ECG signals. It is a weighted version of Orthogonal Matching
Pursuit (OMP), that iteratively builds m-term approximants
by selecting at each step the most appropriate term from D
according to a selection rule. Each iteration k : k ≥ 0 can be
seen as a two-step procedure:

1. A selection step where an atom glk ∈ D is chosen ac-
cording to:

glk = arg max
gl∈D

|〈rk, gl〉| · wl,

where wl ∈ [0, 1] is a pre-estimated weight that reflects,
according to a predefined model, the a priori likelihood
that atom gl may be a correct component of the signal.

2. An orthogonal projection step where an approximant
fk+1 ∈ span(gip : p ∈ {0, ..., k}), and a residual rk+1 =
f −fk+1 are generated (notice that r0 = f , and rk+1 ⊥
fk+1 ∀k). This stage updates, at every step, the set of
scalar expansion coefficients.

The signal representation generated by Weighted-OMP is,
thus, of the form of Eq. (2).

Weighted-OMP was recently proved in [6] to outperform
OMP when using coherent dictionaries and reliable prior in-
formation. Weighted-OMP can consider, in the decomposi-
tion algorithm, a priori models about the behavior of the
dictionary in use with the class of signals to decompose. The
use of good enough a priori models can reduce the instabil-
ity of Weighted-OMP with respect to OMP when trying to
recover sparse approximations/representations.

4.2. Weight Generation: Relation Between ECG
A Priori Knowledge and the Dictionary

Thanks to the structure of VA, fECG can be divided in VA
periods. In addition, each VA period can be divided in a set
of intervals corresponding to the different VA waves (Q, R,
S and T) and an interval without ventricular activity. VA
intervals can be estimated and identified in practice through
the use of QRST point estimators (e.g. see [8], used in this
work). This prior information can thus be used to generate
wl ∀l. The a priori knowledge obtained from [8] needs to be
related with D in the following way.

D is divided in DAA and DV A. Due to dynamics of AF,
AA can be found through all the VA period. Hence, DAA

atoms cannot be penalized. This is the reason why in this
study we force: wl = 1 ∀l : gl ∈ DAA. To the contrary, the
selection of gl ∈ DV A can be successfully influenced by the use
of the available a priori information. DV A, as seen in Sec. 3,
is composed of a block optimized for QRS waves (ventricular
depolarization) and a block designed for T waves (ventricular
repolarization). Depending on the VA interval, wl can be set
to 1 for every gl ∈ DV A belonging to the appropriate kind for
that interval. In case a gl is unsuitable for a given interval,
wl can be set to a penalizing factor 0 ≤ τ < 1. Thanks to the
reliability of the estimators used in this work, it turned out
that the best value for τ in our experiments is 0.

5. EXPERIMENTAL RESULTS

5.1. Validation

A biophysical computer model of the atria was used to obtain
a realistic atrial electrical activity on the torso [9]. The AF
signals that were generated in the 12-lead ECG were added
to a clinical 4-second standard 12-lead ECG of an AF parox-
ysmal patient (78 years old) in sinus rhythm in which the P
waves were removed. The clinical ECG was selected to repre-
sent the VA in AF as closely as possible. The ratio between
the power of the original signal (simulated AA) and the es-
timation error (estimated AA - simulated AA) was used to
evaluate the performance of our method.

5.2. Results

First of all, we want to underline that we validated our choice
of Weighted-OMP instead of OMP with these simulated mea-
sured 4-second ECG signals. By using Weighted-OMP, we
increased the SNR in the recovery of VA (respectively, AA)
by 0.81 dB (respectively, 0.65 dB). All the following results
were obtained by approximating ECG signals with 50 atoms.
Fig. 3 shows the resulting separation of VA and AA for the
simulated measured 4-second ECG signal on lead V1. One
can see how our method succeeds in approximating each one
of the VA episodes and in separating, at the same time, the
AA with surprising accuracy.

In order to study the influence of the AA amplitude on the
method, three different simulated AA signals were created;
50%, 100% and 150% of the original simulated AA amplitude.
The ratio between the power of the original activity (VA or
AA) and the error on the estimated one was evaluated on
leads VR, V1 and V4 (see Table 1). We can observe that the
quality of AA estimation depends on the lead and its original
amplitude. The AA SNRs are much higher with the 150%
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Fig. 3. (a) Simulated measured 4-second ECG signal on V1.
(b) Original VA on V1. (c) Estimated VA on V1 (SNR : 8.69
dB). (d) Simulated AA on V1. (e) Estimated AA on V1 (SNR
: 6.81 dB).

original amplitude and the overall performance on lead V1 is
better than those on the other two leads. Of course, the SNR
values are directly related to the signal amplitude. In V1, the
AA amplitude is higher compared to other leads. However,
we observe a decrease of VA estimation performance in lead
V1.

0.5·AA+VA 1·AA+VA 1.5·AA+VA

lead VR

VA SNR(dB) 11.06 10.88 11.08

AA SNR(dB) -6.94 -1.05 2.61

lead V1

VA SNR(dB) 11.13 8.69 2.41

AA SNR(dB) 3.61 6.81 4.28

lead V4

VA SNR(dB) 12.33 11.94 11.66

AA SNR(dB) -6.53 -0.8 2.4

Table 1. Signal-to-noise ratio (dB) on lead VR, V1 and V4.
Our method performance is tested on 3 different AA ampli-
tudes (50, 100 and 150 % of the original simulated signal).

Fig. 4 shows the resulting separation of the VA and AA of
the clinical 4-second ECG signal on lead V2. Apart from the
visually satisfying component separation, the resulting sig-
nals were validated using estimated power spectral densities
(PSD). The dominant frequency of VA (respectively, AA) is
between 1 and 2.5 Hz (respectively, between 3 and 10 Hz).
The fact that there is no presence of VA dominant frequen-
cies in the AA estimated PSD demonstrates the quality of
our clinical results. Further results can be found in [1].

6. CONCLUSIONS

In this paper, we present a new framework based on sparse
source separation that can be used for QRST cancellation.
Results appear to be very promising. Additional works are
planned for the improvement of the dictionary design, spe-
cially concerning T wave modeling. Moreover, more efficient

X: 1.56 Hz
Y: 0.0100 mV2/Hz

X: 1.56 Hz
Y: 0.0100 mV2/Hz

X: 7.55 Hz

Y: 0.0002 mV2/Hz
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(c)

(d)
2.5 mV

1 sec

(e)
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Fig. 4. (a) Clininal 4-second ECG signal on V2 with a dom-
inant frequency of 1.56 Hz (see its PSD (e)). (b) Estimated
VA on V2 with a dominant frequency of 1.56 Hz (see its PSD
(f)). (c) Estimated AA on V2 with a dominant frequency of
7.55 Hz (see its PSD (g)). (d) Estimated AA on V2 magnified
5 times.

use of a priori knowledge can be studied and the number of
atoms used for decomposing the signals can be optimized.

REFERENCES

[1] J. Molinero Hernandez, “Sparse decompositions for ven-
tricular and atrial activity separation,” M.S. thesis, Sig-
nal Processing Institute, Ecole Polytechnique Fédérale de
Lausanne, Switzerland, August 2005.

[2] M. Lemay, V. Jacquemet, A. Forclaz, J.-M. Vesin, and
L. Kappenberger, “Spatiotemporal QRST cancellation
method using separate QRS and T-waves templates,” in
Computers in Cardiology 2005, September 2005.

[3] F. Castells, J. Igual, J. J. Rieta, C. Sanchez, and J. Mil-
let, “Atrial fibrillation analysis based on ICA including
statistical and temporal source information,” in ICASSP,
2003, pp. V93–V96.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM J. Sci. Comp.,
vol. 20, no. 1, pp. 33–61, 1999.

[5] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recov-
ery of sparse overcomplete representations in the presence
of noise,” To appear in IEEE Trans. Inform. Theory.

[6] O. Divorra Escoda, L. Granai, and P. Vandergheynst, “On
the use of a priori information for sparse signal approxi-
mations,” To appear in IEEE Trans. Signal Processing.

[7] M. Zibulevsky and B. A. Pearlmutter, “Blind source sep-
aration by sparse decomposition in a signal dictionary,”
Neural Comp., vol. 13, no. 4, pp. 863–882, 2001.

[8] R. M. Rangayyan, Biomedical Signal Analysis : A Case-
Study Approach, John Wiley & Sons, Inc., 2002.

[9] V. Jacquemet, M. Lemay, J.-M. Vesin, A. van Oosterom,
and L. Kappenberger, “A biophysical model of ECG sig-
nals during atrial fibrillation used to evaluate the perfor-
mance of QRST cancellation algorithms,” in Computers
in Cardiology 2005, September 2005.

II  1063


